Xutong Guan, Chaodong Wu, Yan Xu, Marc Jolivet, Jinlei Xiu, Cong Lin
{"title":"A fluvial-aeolian system in response to aridification during the Late Mesozoic, Junggar Basin, Central Asia","authors":"Xutong Guan, Chaodong Wu, Yan Xu, Marc Jolivet, Jinlei Xiu, Cong Lin","doi":"10.1111/bre.12879","DOIUrl":null,"url":null,"abstract":"<p>Aridification of Central Asia in the Late Mesozoic led to drastic environmental changes characterized by widespread aeolian deposits. We systematically investigated fluvial-aeolian deposits in the Middle Jurassic Toutunhe Formation, Upper Jurassic Kalazha Formation, and Lower Cretaceous Tugulu Group in the Junggar Basin to the north of the Tianshan Orogenic Belt via unmanned aerial vehicle-based photogrammetry, scanning electron microscope, grain-size analysis, and detrital zircon geochronology. Paludal and deltaic environments transitioned to a fluvial-aeolian environment from the late Middle Jurassic to the Late Jurassic. Fan delta and incisive braided river deposits accumulated in the earliest Cretaceous and evolved into a lacustrine environment with aeolian deposits in the lakeshore. Aeolian deposits are characterized by moderate- to well-sorted and subangular to subround sandstones with large-scale, high-dip cross-bedding, inversely graded lamination, dominant saltation grains, crescent-shaped, and dish-shaped impact structures. Aeolian deposits contain heavy minerals including more ilmenite, zircon, garnet, and, tourmaline and less magnetite and epidote than the fluvial deposits. The preserved aeolian sediments of the Kalazha Formation extend west–east for more than 100 km, suggesting a wide desert area during the latest Jurassic. The detrital zircon age patterns indicate that the provenance of the aeolian deposits was similar to that of coeval fluvial deposits. The cooccurrence of fluvial and aeolian deposits and the similar provenances but orthogonal flow directions indicate that the aeolian deposits were mainly sourced from the nearby fluvial material within the basin. The evolution of the fluvial-aeolian system responded to a complete base-level cycle controlled by the aridification and tectonics. Due to decreased sediment supply caused by aridification, the base level rose, leading to the change from braided rivers to meandering rivers, along with the deposition of aeolian sediments. Due to the tectonic reactivation in the Late Jurassic, the base level fell, causing the occurrence of alluvial fans and the expansion of the aeolian sediments. Previous studies revealed that the Tianshan in the Jurassic exhibited low relief. The fluvial-aeolian system played an important role in maintaining the limited relief in southern Central Asia.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basin Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bre.12879","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aridification of Central Asia in the Late Mesozoic led to drastic environmental changes characterized by widespread aeolian deposits. We systematically investigated fluvial-aeolian deposits in the Middle Jurassic Toutunhe Formation, Upper Jurassic Kalazha Formation, and Lower Cretaceous Tugulu Group in the Junggar Basin to the north of the Tianshan Orogenic Belt via unmanned aerial vehicle-based photogrammetry, scanning electron microscope, grain-size analysis, and detrital zircon geochronology. Paludal and deltaic environments transitioned to a fluvial-aeolian environment from the late Middle Jurassic to the Late Jurassic. Fan delta and incisive braided river deposits accumulated in the earliest Cretaceous and evolved into a lacustrine environment with aeolian deposits in the lakeshore. Aeolian deposits are characterized by moderate- to well-sorted and subangular to subround sandstones with large-scale, high-dip cross-bedding, inversely graded lamination, dominant saltation grains, crescent-shaped, and dish-shaped impact structures. Aeolian deposits contain heavy minerals including more ilmenite, zircon, garnet, and, tourmaline and less magnetite and epidote than the fluvial deposits. The preserved aeolian sediments of the Kalazha Formation extend west–east for more than 100 km, suggesting a wide desert area during the latest Jurassic. The detrital zircon age patterns indicate that the provenance of the aeolian deposits was similar to that of coeval fluvial deposits. The cooccurrence of fluvial and aeolian deposits and the similar provenances but orthogonal flow directions indicate that the aeolian deposits were mainly sourced from the nearby fluvial material within the basin. The evolution of the fluvial-aeolian system responded to a complete base-level cycle controlled by the aridification and tectonics. Due to decreased sediment supply caused by aridification, the base level rose, leading to the change from braided rivers to meandering rivers, along with the deposition of aeolian sediments. Due to the tectonic reactivation in the Late Jurassic, the base level fell, causing the occurrence of alluvial fans and the expansion of the aeolian sediments. Previous studies revealed that the Tianshan in the Jurassic exhibited low relief. The fluvial-aeolian system played an important role in maintaining the limited relief in southern Central Asia.
期刊介绍:
Basin Research is an international journal which aims to publish original, high impact research papers on sedimentary basin systems. We view integrated, interdisciplinary research as being essential for the advancement of the subject area; therefore, we do not seek manuscripts focused purely on sedimentology, structural geology, or geophysics that have a natural home in specialist journals. Rather, we seek manuscripts that treat sedimentary basins as multi-component systems that require a multi-faceted approach to advance our understanding of their development. During deposition and subsidence we are concerned with large-scale geodynamic processes, heat flow, fluid flow, strain distribution, seismic and sequence stratigraphy, modelling, burial and inversion histories. In addition, we view the development of the source area, in terms of drainage networks, climate, erosion, denudation and sediment routing systems as vital to sedimentary basin systems. The underpinning requirement is that a contribution should be of interest to earth scientists of more than one discipline.