{"title":"Collaborative optimization of intersection signals and speed guidance for buses run on overlapping route segments under connected environment","authors":"Chengcheng Yang, Sheng Jin, Wenbin Yao, Donglei Rong, Congcong Bai, Jérémie Adjé Alagbé","doi":"10.1111/mice.13289","DOIUrl":null,"url":null,"abstract":"<p>In order to reduce bus bunching in overlapping route segments and improve the efficiency of bus operation, a dynamic scheduling model is proposed to adjust bus operation states by adopting a cooperative strategy involving multi-line bus timetable optimization, arterial signal control, and speed guidance. Based on mixed integer linear programming, an arterial signal coordination model with autonomous public transport vehicles (APTVs) dedicated lanes is developed, which enables APTVs to pass through intersections without stopping under conditions that almost have no effect on regular vehicles (RVs). Based on this, a speed guidance strategy of APTVs under connected environment is proposed. After guiding APTVs into the overlapping route segments at a reasonable interval, the optimization goal of maintaining the independent running headway of each bus line to the maximum extent is realized. The simulation verification based on three actual overlapping lines in Hangzhou shows that only the combination of signal coordination considering the characteristics of APTVs and speed guidance can realize the full benefits of bus operation based on dedicated APTVs lane.</p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"39 21","pages":"3289-3316"},"PeriodicalIF":8.5000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mice.13289","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to reduce bus bunching in overlapping route segments and improve the efficiency of bus operation, a dynamic scheduling model is proposed to adjust bus operation states by adopting a cooperative strategy involving multi-line bus timetable optimization, arterial signal control, and speed guidance. Based on mixed integer linear programming, an arterial signal coordination model with autonomous public transport vehicles (APTVs) dedicated lanes is developed, which enables APTVs to pass through intersections without stopping under conditions that almost have no effect on regular vehicles (RVs). Based on this, a speed guidance strategy of APTVs under connected environment is proposed. After guiding APTVs into the overlapping route segments at a reasonable interval, the optimization goal of maintaining the independent running headway of each bus line to the maximum extent is realized. The simulation verification based on three actual overlapping lines in Hangzhou shows that only the combination of signal coordination considering the characteristics of APTVs and speed guidance can realize the full benefits of bus operation based on dedicated APTVs lane.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.