Pengfei Wu, Bo Lu, Huan Li, Weijie Li, Xuefeng Zhao
Computer vision strain sensors typically require the camera position to be fixed, limiting measurements to surface deformations of structures at pixel-level resolution. Also, sensors have a service term significantly shorter than the designed service term of the structures. This paper presents research on a high durable computer vision sensor, microimage strain sensing (MISS)-Silica, which utilizes a smartphone connected to an endoscope for measurement. It is designed with a range of 0.05 ε, enabling full-stage strain measurement from loading to failure of structures. The sensor does not require the camera to be fixed during measurements, laying the theoretical foundation for embedded computer vision sensors. Measurement accuracy is improved from pixel level to sub-pixel level, with pixel-based measurement errors around 8 µε (standard deviation approximately 7 µε) and sub-pixel calculation errors around 6 µε (standard deviation approximately 5 µε). Sub-pixel calculation has approximately 30% enhancement in measurement accuracy and stability. MISS-Silica features easy data acquisition, high precision, and long service term, offering a promising method for long-term measurement of both surface and internal structures.
{"title":"Smartphone-based high durable strain sensor with sub-pixel-level accuracy and adjustable camera position","authors":"Pengfei Wu, Bo Lu, Huan Li, Weijie Li, Xuefeng Zhao","doi":"10.1111/mice.13383","DOIUrl":"https://doi.org/10.1111/mice.13383","url":null,"abstract":"Computer vision strain sensors typically require the camera position to be fixed, limiting measurements to surface deformations of structures at pixel-level resolution. Also, sensors have a service term significantly shorter than the designed service term of the structures. This paper presents research on a high durable computer vision sensor, microimage strain sensing (MISS)-Silica, which utilizes a smartphone connected to an endoscope for measurement. It is designed with a range of 0.05 ε, enabling full-stage strain measurement from loading to failure of structures. The sensor does not require the camera to be fixed during measurements, laying the theoretical foundation for embedded computer vision sensors. Measurement accuracy is improved from pixel level to sub-pixel level, with pixel-based measurement errors around 8 µε (standard deviation approximately 7 µε) and sub-pixel calculation errors around 6 µε (standard deviation approximately 5 µε). Sub-pixel calculation has approximately 30% enhancement in measurement accuracy and stability. MISS-Silica features easy data acquisition, high precision, and long service term, offering a promising method for long-term measurement of both surface and internal structures.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"6 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. E. Seilabi, M. Saneii, M. Pourgholamali, M. Miralinaghi, S. Labi
Growth in urban population, travel, and motorization continue to cause an increased need for urban projects to expand road capacity. Unfortunately, these projects also cause travel delays, emissions, driver frustration, and other road user adversities. To alleviate these ills, road agencies often face two work zone design choices: close the road fully and re-reroute traffic or implement partial closure. Both options have significant implications for peri-construction road capacity, traveler costs, and the project duration and cost. This study presents a decision-making methodology to facilitate the choice between full road closure and partial closure. The presented decision-making methodology is a bi-level optimization problem: at the upper level, the road agency seeks to optimally schedule road construction work to minimize net vehicle emissions and road construction costs. The lower-level of the problem captures two types of travelers’ route choice behaviors: rational travelers who minimize their travel time and path-loyal travelers who do not change their routes from their pre-construction routes. The bi-level mixed integer nonlinear model is solved using a reinforcement learning-based algorithm (the multi-armed bandit-guided particle swarm optimization [PSO] technique). The computational experiments suggest the superiority of the proposed algorithm, compared to the classic PSO algorithm in terms of solution quality. The numerical results suggest that if the percentage of path-loyal travelers increases, the agency needs to invest more in road project construction to implement under partial closure to avoid a significant increase in vehicle emissions.
{"title":"Reinforcement learning-based approach for urban road project scheduling considering alternative closure types","authors":"S. E. Seilabi, M. Saneii, M. Pourgholamali, M. Miralinaghi, S. Labi","doi":"10.1111/mice.13365","DOIUrl":"https://doi.org/10.1111/mice.13365","url":null,"abstract":"Growth in urban population, travel, and motorization continue to cause an increased need for urban projects to expand road capacity. Unfortunately, these projects also cause travel delays, emissions, driver frustration, and other road user adversities. To alleviate these ills, road agencies often face two work zone design choices: close the road fully and re-reroute traffic or implement partial closure. Both options have significant implications for peri-construction road capacity, traveler costs, and the project duration and cost. This study presents a decision-making methodology to facilitate the choice between full road closure and partial closure. The presented decision-making methodology is a bi-level optimization problem: at the upper level, the road agency seeks to optimally schedule road construction work to minimize net vehicle emissions and road construction costs. The lower-level of the problem captures two types of travelers’ route choice behaviors: rational travelers who minimize their travel time and path-loyal travelers who do not change their routes from their pre-construction routes. The bi-level mixed integer nonlinear model is solved using a reinforcement learning-based algorithm (the multi-armed bandit-guided particle swarm optimization [PSO] technique). The computational experiments suggest the superiority of the proposed algorithm, compared to the classic PSO algorithm in terms of solution quality. The numerical results suggest that if the percentage of path-loyal travelers increases, the agency needs to invest more in road project construction to implement under partial closure to avoid a significant increase in vehicle emissions.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"46 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The cover image is based on the Article A multi-phase mechanical model of biochar–cement composites at the mesoscale by Muduo Li et al., https://doi.org/10.1111/mice.13307.