首页 > 最新文献

Computer-Aided Civil and Infrastructure Engineering最新文献

英文 中文
Cover Image, Volume 40, Issue 31 封面图片,第40卷,第31期
IF 9.1 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-19 DOI: 10.1111/mice.70188

The cover image is based on the article Emergency response vehicle routing allowing lane straddling in congested traffic conditions under connected and autonomous vehicle environment by Jiyoung Kim et al., https://doi.org/10.1111/mice.70168.

封面图片基于Jiyoung Kim et al., https://doi.org/10.1111/mice.70168的文章《在互联和自动驾驶汽车环境下拥堵交通条件下允许跨车道的应急响应车辆路径》。
{"title":"Cover Image, Volume 40, Issue 31","authors":"","doi":"10.1111/mice.70188","DOIUrl":"10.1111/mice.70188","url":null,"abstract":"<p><b>The cover image</b> is based on the article <i>Emergency response vehicle routing allowing lane straddling in congested traffic conditions under connected and autonomous vehicle environment</i> by Jiyoung Kim et al., https://doi.org/10.1111/mice.70168.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"40 31","pages":""},"PeriodicalIF":9.1,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.70188","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145778089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 40, Issue 31 封面图片,第40卷,第31期
IF 9.1 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-19 DOI: 10.1111/mice.70185

The cover image is based on the article A method for detecting construction deviations in large and complex building structures utilizing synthetic point clouds for segmentation by Jia Zou et al., https://doi.org/10.1111/mice.70171.

封面图像基于Jia Zou等人的文章A method for detection construction deviation in large and complex building structures using synthetic point cloud for segmentation, https://doi.org/10.1111/mice.70171。
{"title":"Cover Image, Volume 40, Issue 31","authors":"","doi":"10.1111/mice.70185","DOIUrl":"10.1111/mice.70185","url":null,"abstract":"<p><b>The cover image</b> is based on the article <i>A method for detecting construction deviations in large and complex building structures utilizing synthetic point clouds for segmentation</i> by Jia Zou et al., https://doi.org/10.1111/mice.70171.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"40 31","pages":""},"PeriodicalIF":9.1,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.70185","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145777826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 40, Issue 31 封面图片,第40卷,第31期
IF 9.1 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-19 DOI: 10.1111/mice.70184

The cover image is based on the article Large language model for post-earthquake structural damage assessment of buildings by Yongqing Jiang et al., https://doi.org/10.1111/mice.70010.

封面图像基于江永清等人,https://doi.org/10.1111/mice.70010的文章《建筑震后结构损伤评估的大语言模型》。
{"title":"Cover Image, Volume 40, Issue 31","authors":"","doi":"10.1111/mice.70184","DOIUrl":"10.1111/mice.70184","url":null,"abstract":"<p><b>The cover image</b> is based on the article <i>Large language model for post-earthquake structural damage assessment of buildings</i> by Yongqing Jiang et al., https://doi.org/10.1111/mice.70010.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"40 31","pages":""},"PeriodicalIF":9.1,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.70184","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145777825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 40, Issue 31 封面图片,第40卷,第31期
IF 9.1 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-19 DOI: 10.1111/mice.70187

The cover image is based on the article Reinforcement response prediction of composite-concrete beams with crack patterns and deep learning by Sike Wang et al., https://doi.org/10.1111/mice.70174.

封面图像基于王思科等人的文章《基于裂缝模式和深度学习的复合混凝土梁的钢筋响应预测》,https://doi.org/10.1111/mice.70174。
{"title":"Cover Image, Volume 40, Issue 31","authors":"","doi":"10.1111/mice.70187","DOIUrl":"10.1111/mice.70187","url":null,"abstract":"<p><b>The cover image</b> is based on the article <i>Reinforcement response prediction of composite-concrete beams with crack patterns and deep learning</i> by Sike Wang et al., https://doi.org/10.1111/mice.70174.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"40 31","pages":""},"PeriodicalIF":9.1,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.70187","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145777827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 40, Issue 30 封面图像,第40卷,第30期
IF 9.1 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-09 DOI: 10.1111/mice.70183

The cover image is based on the article Progressive development of cracks in biochar-cement composites through multiscale analysis by Muduo Li et al., https://doi.org/10.1111/mice.70090.

封面图片基于李慕铎等人的文章《通过多尺度分析逐步发展生物炭-水泥复合材料中的裂缝》,https://doi.org/10.1111/mice.70090。
{"title":"Cover Image, Volume 40, Issue 30","authors":"","doi":"10.1111/mice.70183","DOIUrl":"https://doi.org/10.1111/mice.70183","url":null,"abstract":"<p><b>The cover image</b> is based on the article <i>Progressive development of cracks in biochar-cement composites through multiscale analysis</i> by Muduo Li et al., https://doi.org/10.1111/mice.70090.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"40 30","pages":""},"PeriodicalIF":9.1,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.70183","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145706387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 40, Issue 30 封面图像,第40卷,第30期
IF 9.1 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-09 DOI: 10.1111/mice.70181

The cover image is based on the article 4D spatial-temporal information infrastructure for digital twin environments using Spatial IDs by Kenji Nakamura et al., https://doi.org/10.1111/mice.70146.

封面图像基于Kenji Nakamura等人的文章《使用空间id的数字孪生环境的4D时空信息基础设施》,https://doi.org/10.1111/mice.70146。
{"title":"Cover Image, Volume 40, Issue 30","authors":"","doi":"10.1111/mice.70181","DOIUrl":"https://doi.org/10.1111/mice.70181","url":null,"abstract":"<p><b>The cover image</b> is based on the article <i>4D spatial-temporal information infrastructure for digital twin environments using Spatial IDs</i> by Kenji Nakamura et al., https://doi.org/10.1111/mice.70146.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"40 30","pages":""},"PeriodicalIF":9.1,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.70181","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145706419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchical analysis of spreading dynamics in complex systems 复杂系统扩展动力学的层次分析
IF 9.1 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-08 DOI: 10.1111/mice.70165
Aparimit Kasliwal, Abdullah Alhadlaq, Ariel Salgado, Auroop R. Ganguly, Marta C. González

Modeling spreading dynamics on spatial networks is crucial to addressing challenges related to traffic congestion, epidemic outbreaks, efficient information dissemination, and technology adoption. Existing approaches include domain-specific agent-based simulations, which offer detailed dynamics but often involve extensive parameterization, and simplified differential equation models, which provide analytical tractability but may abstract away spatial heterogeneity in propagation patterns. As a step toward addressing this trade-off, this work presents a hierarchical multiscale framework that approximates spreading dynamics across different spatial scales under certain simplifying assumptions. Applied to the Susceptible-Infected-Recovered (SIR) model, the approach ensures consistency in dynamics across scales through multiscale regularization, linking parameters at finer scales to those obtained at coarser scales. This approach constrains the parameter search space, and enables faster convergence of the model fitting process compared to the non-regularized model. Using hierarchical modeling, the spatial dependencies critical for understanding system-level behavior are captured while mitigating the computational challenges posed by parameter proliferation at finer scales. Considering traffic congestion and COVID-19 spread as case studies, the calibrated fine-scale model is employed to analyze the effects of perturbations and to identify critical regions and connections that disproportionately influence system dynamics. This facilitates targeted intervention strategies and provides a tool for studying and managing spreading processes in spatially distributed sociotechnical systems.

空间网络上的传播动态建模对于解决与交通拥堵、流行病爆发、有效信息传播和技术采用相关的挑战至关重要。现有的方法包括基于特定领域的智能体模拟,它提供了详细的动力学,但通常涉及广泛的参数化,以及简化的微分方程模型,它提供了分析的可追溯性,但可能抽象掉传播模式的空间异质性。作为解决这一权衡的一步,本研究提出了一个分层的多尺度框架,该框架在某些简化假设下近似于不同空间尺度上的传播动态。应用于易感-感染-恢复(SIR)模型,该方法通过多尺度正则化确保跨尺度动态的一致性,将精细尺度上的参数与粗尺度上获得的参数联系起来。该方法限制了参数搜索空间,与非正则化模型相比,可以更快地收敛模型拟合过程。通过分层建模,可以捕捉到对理解系统级行为至关重要的空间依赖关系,同时在更精细的尺度上减轻参数扩散带来的计算挑战。以交通拥堵和COVID - 19传播为例,采用校准的细尺度模型来分析扰动的影响,并确定不成比例地影响系统动力学的关键区域和连接。这促进了有针对性的干预策略,并为研究和管理空间分布的社会技术系统中的传播过程提供了工具。
{"title":"Hierarchical analysis of spreading dynamics in complex systems","authors":"Aparimit Kasliwal,&nbsp;Abdullah Alhadlaq,&nbsp;Ariel Salgado,&nbsp;Auroop R. Ganguly,&nbsp;Marta C. González","doi":"10.1111/mice.70165","DOIUrl":"10.1111/mice.70165","url":null,"abstract":"<p>Modeling spreading dynamics on spatial networks is crucial to addressing challenges related to traffic congestion, epidemic outbreaks, efficient information dissemination, and technology adoption. Existing approaches include domain-specific agent-based simulations, which offer detailed dynamics but often involve extensive parameterization, and simplified differential equation models, which provide analytical tractability but may abstract away spatial heterogeneity in propagation patterns. As a step toward addressing this trade-off, this work presents a hierarchical multiscale framework that approximates spreading dynamics across different spatial scales under certain simplifying assumptions. Applied to the Susceptible-Infected-Recovered (SIR) model, the approach ensures consistency in dynamics across scales through multiscale regularization, linking parameters at finer scales to those obtained at coarser scales. This approach constrains the parameter search space, and enables faster convergence of the model fitting process compared to the non-regularized model. Using hierarchical modeling, the spatial dependencies critical for understanding system-level behavior are captured while mitigating the computational challenges posed by parameter proliferation at finer scales. Considering traffic congestion and COVID-19 spread as case studies, the calibrated fine-scale model is employed to analyze the effects of perturbations and to identify critical regions and connections that disproportionately influence system dynamics. This facilitates targeted intervention strategies and provides a tool for studying and managing spreading processes in spatially distributed sociotechnical systems.</p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"40 31","pages":"6223-6241"},"PeriodicalIF":9.1,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.70165","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145703914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hierarchical framework for three-dimensional pavement crack detection on point clouds with multi-scale abnormal region filtering and multimodal interaction fusion 基于多尺度异常区域滤波和多模态相互作用融合的点云路面三维裂缝分层检测框架
IF 9.1 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-03 DOI: 10.1111/mice.70167
Jiayv Jing, Ling Ding, Xu Yang, Hang Cheng, Yazhen Qiu, Hainian Wang, Rauno Heikkilä

Early crack detection enables timely maintenance actions, which in turn help extend pavement life and reduce maintenance costs. Traditional 2D detection lacks detail, while 3D detection faces accuracy and efficiency challenges. This paper proposes a hierarchical crack detection framework—F2CrackDet-PCD (crack detection based on point cloud data with filtering and fusion). The framework adopts a pre-filtering and fine segmentation strategy (multi-scale anomaly region filtering [MARF]). First, the MARF uses point cloud characteristics to quickly identify potential crack regions. Then, an orthogonal projection converts 3D data into RGB, depth, and normal images, which are combined by MIF-CrackNet (multimodal interaction fusion) to enhance detection accuracy and robustness. Two datasets were developed: RoadScan-2228, capturing realistic road scenes, and CrackNet-1187, emphasizing densely cracked pavement. Experimental results show that the MARF achieves a recall of about 98% on both datasets. F2CrackDet-PCD achieves F1-scores of 75.0 on RoadScan-2228 and 78.2 on CrackNet-1187. F2CrackDet-PCD provides a solution of lane-level 3D point cloud crack detection for large-scale road detection.

早期发现裂缝可以及时采取维修措施,从而延长路面寿命,降低维修成本。传统的二维检测缺乏细节,而三维检测则面临精度和效率的挑战。本文提出了一种分层裂纹检测框架——f2 CrackDet - PCD(基于滤波和融合的点云数据的裂纹检测)。该框架采用了预滤波和精细分割策略(多尺度异常区域滤波[MARF])。首先,MARF利用点云特征快速识别潜在裂纹区域。然后,正交投影将3D数据转换为RGB、深度和正常图像,并通过MIF‐CrackNet(多模态交互融合)将它们组合在一起,以提高检测精度和鲁棒性。开发了两个数据集:RoadScan‐2228,捕捉真实的道路场景,以及CrackNet‐1187,强调密集裂缝路面。实验结果表明,MARF在两个数据集上都达到了98%左右的召回率。f2 CrackDet‐PCD在RoadScan‐2228和CrackNet‐1187上分别达到75.0和78.2的F1‐分数。f2crackdet - PCD为大规模道路检测提供了车道级三维点云裂缝检测解决方案。
{"title":"A hierarchical framework for three-dimensional pavement crack detection on point clouds with multi-scale abnormal region filtering and multimodal interaction fusion","authors":"Jiayv Jing,&nbsp;Ling Ding,&nbsp;Xu Yang,&nbsp;Hang Cheng,&nbsp;Yazhen Qiu,&nbsp;Hainian Wang,&nbsp;Rauno Heikkilä","doi":"10.1111/mice.70167","DOIUrl":"10.1111/mice.70167","url":null,"abstract":"<p>Early crack detection enables timely maintenance actions, which in turn help extend pavement life and reduce maintenance costs. Traditional 2D detection lacks detail, while 3D detection faces accuracy and efficiency challenges. This paper proposes a hierarchical crack detection framework—F<sup>2</sup>CrackDet-PCD (crack detection based on point cloud data with filtering and fusion). The framework adopts a pre-filtering and fine segmentation strategy (multi-scale anomaly region filtering [MARF]). First, the MARF uses point cloud characteristics to quickly identify potential crack regions. Then, an orthogonal projection converts 3D data into RGB, depth, and normal images, which are combined by MIF-CrackNet (multimodal interaction fusion) to enhance detection accuracy and robustness. Two datasets were developed: RoadScan-2228, capturing realistic road scenes, and CrackNet-1187, emphasizing densely cracked pavement. Experimental results show that the MARF achieves a recall of about 98% on both datasets. F<sup>2</sup>CrackDet-PCD achieves F1-scores of 75.0 on RoadScan-2228 and 78.2 on CrackNet-1187. F<sup>2</sup>CrackDet-PCD provides a solution of lane-level 3D point cloud crack detection for large-scale road detection.</p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"40 31","pages":"6577-6596"},"PeriodicalIF":9.1,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.70167","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 40, Issue 29 封面图片,第40卷,第29期
IF 9.1 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-03 DOI: 10.1111/mice.70178

The cover image is based on the article Hierarchical adaptive cross-coupled control of traffic signals and vehicle routes in large-scale road network by Yizhuo Chang et al., https://doi.org/10.1111/mice.13508.

该封面图像基于Yizhuo Chang et al., https://doi.org/10.1111/mice.13508的文章《大规模路网中交通信号和车辆路线的分层自适应交叉耦合控制》。
{"title":"Cover Image, Volume 40, Issue 29","authors":"","doi":"10.1111/mice.70178","DOIUrl":"10.1111/mice.70178","url":null,"abstract":"<p><b>The cover image</b> is based on the article <i>Hierarchical adaptive cross-coupled control of traffic signals and vehicle routes in large-scale road network</i> by Yizhuo Chang et al., https://doi.org/10.1111/mice.13508.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"40 29","pages":""},"PeriodicalIF":9.1,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.70178","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145657819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 40, Issue 29 封面图片,第40卷,第29期
IF 9.1 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-03 DOI: 10.1111/mice.70180

The cover image is based on the article Efficient unsupervised domain adaptation for crack segmentation with interpretable Fourier– Morphology blending and Uncertainty-guided selftraining by Saheli Bhattacharya et al., https://doi.org/10.1111/mice.70127.

封面图像基于Saheli Bhattacharya等人的文章《高效无监督域自适应裂缝分割与可解释的傅里叶-形态学混合和不确定性引导自训练》,https://doi.org/10.1111/mice.70127。
{"title":"Cover Image, Volume 40, Issue 29","authors":"","doi":"10.1111/mice.70180","DOIUrl":"https://doi.org/10.1111/mice.70180","url":null,"abstract":"<p><b>The cover image</b> is based on the article <i>Efficient unsupervised domain adaptation for crack segmentation with interpretable Fourier– Morphology blending and Uncertainty-guided selftraining</i> by Saheli Bhattacharya et al., https://doi.org/10.1111/mice.70127.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"40 29","pages":""},"PeriodicalIF":9.1,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.70180","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145659668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computer-Aided Civil and Infrastructure Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1