Bheem Singh, Vinay Kumar Dhiman, Govinda Chandra Behera, S. Gautam, Rahul Kumar, M. Senthil Kumar, Somnath C. Roy, S. S. Kushvaha
{"title":"Bi2Se3/ZnSe heterojunction on flexible Mo metal foil for photo electrolysis water splitting application","authors":"Bheem Singh, Vinay Kumar Dhiman, Govinda Chandra Behera, S. Gautam, Rahul Kumar, M. Senthil Kumar, Somnath C. Roy, S. S. Kushvaha","doi":"10.1515/zpch-2024-0818","DOIUrl":null,"url":null,"abstract":"Abstract The green hydrogen generation by photoelectrochemical (PEC) process emerged as a viable approach to replace non-renewable energy sources, which is done by using semiconducting materials. Recently ZnSe-based heterostructure/junction promise a suitable approach to enhance the PEC performance of photoelectrode. Here we have grown Bi2Se3/ZnSe heterojunction on flexible Mo metal foil by using magnetron sputtering technique toward PEC water splitting application. The crystallinity, structural, and surface morphology of the deposited films were investigated by X-ray diffraction, Raman spectroscopy, and field emission scanning electron microscopy, respectively. The PEC measurements were performed under 100 mW/cm2 (AM = 1.5 G) simulated solar radiation in 0.5 M Na2SO4 aqueous electrolyte solution. The PEC measurements show that Bi2Se3/ZnSe photoelectrode performs better as a photocatalyst, with a photocurrent density of ∼96.4 μA/cm2 (at 0.4 V vs Ag/AgCl), which was found to be three times higher than pristine ZnSe film (∼32.4 μA/cm2). This work suggests the importance of heterojunction towards efficient photoelectrodes for green hydrogen generation.","PeriodicalId":23847,"journal":{"name":"Zeitschrift für Physikalische Chemie","volume":"10 30","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Physikalische Chemie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zpch-2024-0818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The green hydrogen generation by photoelectrochemical (PEC) process emerged as a viable approach to replace non-renewable energy sources, which is done by using semiconducting materials. Recently ZnSe-based heterostructure/junction promise a suitable approach to enhance the PEC performance of photoelectrode. Here we have grown Bi2Se3/ZnSe heterojunction on flexible Mo metal foil by using magnetron sputtering technique toward PEC water splitting application. The crystallinity, structural, and surface morphology of the deposited films were investigated by X-ray diffraction, Raman spectroscopy, and field emission scanning electron microscopy, respectively. The PEC measurements were performed under 100 mW/cm2 (AM = 1.5 G) simulated solar radiation in 0.5 M Na2SO4 aqueous electrolyte solution. The PEC measurements show that Bi2Se3/ZnSe photoelectrode performs better as a photocatalyst, with a photocurrent density of ∼96.4 μA/cm2 (at 0.4 V vs Ag/AgCl), which was found to be three times higher than pristine ZnSe film (∼32.4 μA/cm2). This work suggests the importance of heterojunction towards efficient photoelectrodes for green hydrogen generation.