Viscoelastic Fractional Model with a Non-Uniform Time Discretization for Laminated Glass: Experimental Validation

Lorenzo Santi, Stephen Bennison, Michael Haerth
{"title":"Viscoelastic Fractional Model with a Non-Uniform Time Discretization for Laminated Glass: Experimental Validation","authors":"Lorenzo Santi, Stephen Bennison, Michael Haerth","doi":"10.47982/cgc.9.619","DOIUrl":null,"url":null,"abstract":"We discuss a novel approach, based on fractional calculus with a non-uniform time discretization, to numerically simulate interlayer viscoelastic behaviour and associated time-dependent deformation of laminated glass. Reference is made to the classic example of a simply supported laminated glass beam under long-duration loads. The fractional model is compared with some results obtained using the widely used finite element software ABAQUS 2021, which for the viscoelastic properties of the polymeric interlayer, utilizes the more traditional approach based on the Wiechert model and approximation via Prony series of the relaxation function and a uniform discretization of time for the numerical solution. The model is also validated through the comparison with experimental test.  The novel approach based on fractional calculus presents two main advantages: 1) the definition of the model parameters from experimental data is simplified; and 2) the numerical implementation is easier and computationally more efficient. When a long observation time is considered, the use of a non-uniform time discretization presents the great advantage of not neglecting any part of the relaxation function. Use of traditional uniform time discretization requires the use of large time steps making it impossible to describe all the changes of the relaxation curve within the large time interval. Practical examples will be presented using viscoelastic models for Trosifol® Extra Stiff (PVB) and SentryGlas® interlayers. This methodology also shows potential to advance next generation standards for the design of structural laminated glass.","PeriodicalId":332145,"journal":{"name":"Challenging Glass Conference Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Challenging Glass Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47982/cgc.9.619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss a novel approach, based on fractional calculus with a non-uniform time discretization, to numerically simulate interlayer viscoelastic behaviour and associated time-dependent deformation of laminated glass. Reference is made to the classic example of a simply supported laminated glass beam under long-duration loads. The fractional model is compared with some results obtained using the widely used finite element software ABAQUS 2021, which for the viscoelastic properties of the polymeric interlayer, utilizes the more traditional approach based on the Wiechert model and approximation via Prony series of the relaxation function and a uniform discretization of time for the numerical solution. The model is also validated through the comparison with experimental test.  The novel approach based on fractional calculus presents two main advantages: 1) the definition of the model parameters from experimental data is simplified; and 2) the numerical implementation is easier and computationally more efficient. When a long observation time is considered, the use of a non-uniform time discretization presents the great advantage of not neglecting any part of the relaxation function. Use of traditional uniform time discretization requires the use of large time steps making it impossible to describe all the changes of the relaxation curve within the large time interval. Practical examples will be presented using viscoelastic models for Trosifol® Extra Stiff (PVB) and SentryGlas® interlayers. This methodology also shows potential to advance next generation standards for the design of structural laminated glass.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
夹层玻璃的非均匀时间离散粘弹性分数模型:实验验证
我们讨论了一种基于分数微积分和非均匀时间离散化的新方法,用于对夹层玻璃的层间粘弹性行为和相关的随时间变化的变形进行数值模拟。参考了在长期荷载作用下简单支撑夹层玻璃梁的经典实例。该软件对聚合物夹层的粘弹特性采用了基于 Wiechert 模型的传统方法,并通过松弛函数的 Prony 序列和时间的均匀离散进行近似数值求解。该模型还通过与实验测试的比较进行了验证。 基于分数微积分的新方法有两大优势:1) 简化了根据实验数据定义模型参数的过程;2) 数值实现更容易,计算效率更高。在考虑较长的观测时间时,使用非均匀时间离散法具有不忽略松弛函数任何部分的巨大优势。使用传统的均匀时间离散法需要使用较大的时间步长,因此无法描述大时间间隔内松弛曲线的所有变化。将使用 Trosifol® Extra Stiff (PVB) 和 SentryGlas® 夹层的粘弹性模型来介绍实际例子。该方法还显示了推动下一代结构夹层玻璃设计标准的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stress Distribution along the Structural Sealant Joint Length of a Cylindrically Curved Glazing Panel Restoring Hi-Tech Architecture Early-Detection of EVA Encapsulant Degradation in PV Modules Based on Vibration Frequency Analysis Panoramic Perfection: Unveiling Technical Insights from “The Henderson” in Hong Kong A Portable Technology for Measuring Haze Levels in Thick Laminated Glass Panels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1