{"title":"Studies of structural and optical properties of sputtered SiC thin films","authors":"Mukesh Kumar Mukesh Kumar","doi":"10.62638/zasmat1143","DOIUrl":null,"url":null,"abstract":"The present study explored the deposition of amorphous silicon carbide (a-SiC) thin films on Si (100) and glass substrates using RF-magnetron sputtering. The sputtering power is changed from 100 to 250 W to study its influence on the characteristics of a-SiC thin films. Raman spectroscopy reveals the formation of a-SiC as well as carbon clusters. The film deposited at 100 W clearly shows the presence of both transverse optical (TO) and longitudinal optical (LO) phonon modes. The average roughness of the a-SiC films found to follow an increasing trend with increase in the sputtering power. The optical band gap of the a-SiC films measured by UV-Visible spectrophotometer was found to increase up to 2.45 eV with decrease in sputtering power. All a-SiC thin films were highly transparent. The Photoluminescence (PL) spectroscopy results were in agreement with the data observed by UV-Visible spectroscopy","PeriodicalId":23842,"journal":{"name":"Zastita materijala","volume":"90 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zastita materijala","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62638/zasmat1143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The present study explored the deposition of amorphous silicon carbide (a-SiC) thin films on Si (100) and glass substrates using RF-magnetron sputtering. The sputtering power is changed from 100 to 250 W to study its influence on the characteristics of a-SiC thin films. Raman spectroscopy reveals the formation of a-SiC as well as carbon clusters. The film deposited at 100 W clearly shows the presence of both transverse optical (TO) and longitudinal optical (LO) phonon modes. The average roughness of the a-SiC films found to follow an increasing trend with increase in the sputtering power. The optical band gap of the a-SiC films measured by UV-Visible spectrophotometer was found to increase up to 2.45 eV with decrease in sputtering power. All a-SiC thin films were highly transparent. The Photoluminescence (PL) spectroscopy results were in agreement with the data observed by UV-Visible spectroscopy