Sacrificial NH4HCO3 Inhibits Fluoropolymer/Garnet Interfacial Reactions Toward 1mS cm−1 and 5V‐Level Composite Solid Electrolyte

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-06-14 DOI:10.1002/adfm.202405060
Yaping Wang, Pengcheng Yuan, Xiong Xiong Liu, Shengfa Feng, Mufan Cao, Jianxiang Ding, Jiacheng Liu, Song‐Zhu Kure‐Chu, Takehiko Hihara, Long Pan, Zhengming Sun
{"title":"Sacrificial NH4HCO3 Inhibits Fluoropolymer/Garnet Interfacial Reactions Toward 1mS cm−1 and 5V‐Level Composite Solid Electrolyte","authors":"Yaping Wang, Pengcheng Yuan, Xiong Xiong Liu, Shengfa Feng, Mufan Cao, Jianxiang Ding, Jiacheng Liu, Song‐Zhu Kure‐Chu, Takehiko Hihara, Long Pan, Zhengming Sun","doi":"10.1002/adfm.202405060","DOIUrl":null,"url":null,"abstract":"Composite solid electrolytes (CSEs) integrate the fast ion conductivity of inorganic electrolytes and the excellent interfacial compatibility of polymer electrolytes. Typically, fluoropolymers and garnets are promising individuals to formulate cutting‐edge CSEs owing to their unique properties. However, the alkaline garnets can induce the dehydrofluorination of fluoropolymers, deteriorating their CSEs performance. Here, for the first time, NH4HCO3 is proposed as a sacrificial inhibitor to effectively prevent the garnet‐induced dehydrofluorination, using Li6.4La3Zr1.4Ta0.6O12 (LLZTO) and poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVH) as symbolic garnets and fluoropolymers, respectively. Various findings demonstrate that NH4HCO3 can buffer the alkalinity of LLZTO, thereby inhibiting the dehydrofluorination of PVH. In addition, NH4HCO3 can completely decompose to volatiles upon drying without compromising the properties of LLZTO and PVH. Additionally, a polymer‐in‐salt strategy is further introduced by adding high‐concentration LiTFSI salt to the above system, resulting in the PVH/LiTFSI/LLZTO (PLL) CSEs. Benefiting from the synergetic coupling of the sacrificial inhibitor and polymer‐in‐salt strategies, the PLL exhibits an exceptionally high ionic conductivity of 1.2 mS cm−1 at 25 °C and stable voltage of 5.09 V, outperforming other reported CSEs. Consequently, the PLL delivers impressive high‐rate cyclability in solid‐state lithium‐metal batteries with an outstanding capacity retention of 95.4% after 240 cycles at 1 C (25 °C).","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202405060","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Composite solid electrolytes (CSEs) integrate the fast ion conductivity of inorganic electrolytes and the excellent interfacial compatibility of polymer electrolytes. Typically, fluoropolymers and garnets are promising individuals to formulate cutting‐edge CSEs owing to their unique properties. However, the alkaline garnets can induce the dehydrofluorination of fluoropolymers, deteriorating their CSEs performance. Here, for the first time, NH4HCO3 is proposed as a sacrificial inhibitor to effectively prevent the garnet‐induced dehydrofluorination, using Li6.4La3Zr1.4Ta0.6O12 (LLZTO) and poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVH) as symbolic garnets and fluoropolymers, respectively. Various findings demonstrate that NH4HCO3 can buffer the alkalinity of LLZTO, thereby inhibiting the dehydrofluorination of PVH. In addition, NH4HCO3 can completely decompose to volatiles upon drying without compromising the properties of LLZTO and PVH. Additionally, a polymer‐in‐salt strategy is further introduced by adding high‐concentration LiTFSI salt to the above system, resulting in the PVH/LiTFSI/LLZTO (PLL) CSEs. Benefiting from the synergetic coupling of the sacrificial inhibitor and polymer‐in‐salt strategies, the PLL exhibits an exceptionally high ionic conductivity of 1.2 mS cm−1 at 25 °C and stable voltage of 5.09 V, outperforming other reported CSEs. Consequently, the PLL delivers impressive high‐rate cyclability in solid‐state lithium‐metal batteries with an outstanding capacity retention of 95.4% after 240 cycles at 1 C (25 °C).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工合成 NH4HCO3 可抑制氟聚合物/石榴石的界面反应,使其达到 1mS cm-1 和 5V 级复合固体电解质的水平
复合固体电解质(CSE)集无机电解质的快速离子传导性和聚合物电解质的出色界面相容性于一身。通常情况下,含氟聚合物和石榴石因其独特的性能而成为配制尖端 CSE 的理想材料。然而,碱性石榴石会导致含氟聚合物脱氢氟化,从而降低 CSE 的性能。本文首次提出将 NH4HCO3 作为一种牺牲抑制剂,以 Li6.4La3Zr1.4Ta0.6O12 (LLZTO) 和聚偏氟乙烯-六氟丙烯 (PVH) 分别作为标志性石榴石和含氟聚合物,有效防止石榴石诱导的脱氢氟化。各种研究结果表明,NH4HCO3 可以缓冲 LLZTO 的碱度,从而抑制 PVH 的脱氢氟化。此外,NH4HCO3 在干燥时可完全分解为挥发物,而不会影响 LLZTO 和 PVH 的性能。此外,通过在上述体系中添加高浓度 LiTFSI 盐,进一步引入了盐中聚合物策略,从而得到了 PVH/LiTFSI/LLZTO (PLL) CSE。得益于牺牲抑制剂和盐中聚合物策略的协同耦合,PLL 在 25 °C 时表现出 1.2 mS cm-1 的超高离子电导率和 5.09 V 的稳定电压,优于其他已报道的 CSE。因此,PLL 在固态锂金属电池中具有令人印象深刻的高速循环能力,在 1 C(25 °C)条件下循环 240 次后,容量保持率高达 95.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Bioinspired Stretchable Strain Sensor with High Linearity and Superhydrophobicity for Underwater Applications Synergizing Proton‐Dominated Storage and Electron Transfer for High‐Loading, Fast‐Rate Organic Anode in Metal‐Free Aqueous Zinc‐Ion Batteries Enhanced Pyroelectricity Over Extended Thermal Range in Flexible Polymer Thin Films Stability Challenges in Industrialization of Perovskite Photovoltaics: From Atomic‐Scale View to Module Encapsulation Photothermal-Electric Excited Droplet Multibehavioral Manipulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1