Baoquan Hu, Jun Liu, Rongzhen Zhao, Yue Xu, Tianlong Huo
{"title":"A new dual-channel convolutional neural network and its application in rolling bearing fault diagnosis","authors":"Baoquan Hu, Jun Liu, Rongzhen Zhao, Yue Xu, Tianlong Huo","doi":"10.1088/1361-6501/ad5861","DOIUrl":null,"url":null,"abstract":"\n Recently, deep learning has received widespread attention in the field of bearing fault diagnosis due to its powerful feature learning capability. However, when the actual working conditions are complex and variable, the fault information in a single domain is limited, making it difficult to achieve high accuracy. To overcome these challenges, this paper proposes a bearing fault diagnosis method based on the Markov transition field (MTF), continuous wavelet transform (CWT), and dual-channel convolutional neural network (CNN). The method combines the descriptive ability of the Markov model for state transfer, the time-frequency analysis ability of CWT for signal, and the excellent performance of CNN with attention mechanism in feature extraction and classification. Specifically, we first propose a multi-channel Markov transition field (MMTF) method, which is combined with CWT to obtain two different representations of two-dimensional (2D) images. To comprehensively mine fault information, we further propose a dual-channel CNN with an attention mechanism. The design of this network structure aims to extract multi-level features from two types of 2D images. At the same time, we designed and embedded an attention mechanism to enable the network to focus more on extracting effective features, thereby improving the performance and accuracy of the network. To verify the effectiveness of the proposed method, two datasets were used for empirical research. The results show that this method exhibits superior performance in bearing fault diagnosis and has higher accuracy compared to traditional methods.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad5861","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, deep learning has received widespread attention in the field of bearing fault diagnosis due to its powerful feature learning capability. However, when the actual working conditions are complex and variable, the fault information in a single domain is limited, making it difficult to achieve high accuracy. To overcome these challenges, this paper proposes a bearing fault diagnosis method based on the Markov transition field (MTF), continuous wavelet transform (CWT), and dual-channel convolutional neural network (CNN). The method combines the descriptive ability of the Markov model for state transfer, the time-frequency analysis ability of CWT for signal, and the excellent performance of CNN with attention mechanism in feature extraction and classification. Specifically, we first propose a multi-channel Markov transition field (MMTF) method, which is combined with CWT to obtain two different representations of two-dimensional (2D) images. To comprehensively mine fault information, we further propose a dual-channel CNN with an attention mechanism. The design of this network structure aims to extract multi-level features from two types of 2D images. At the same time, we designed and embedded an attention mechanism to enable the network to focus more on extracting effective features, thereby improving the performance and accuracy of the network. To verify the effectiveness of the proposed method, two datasets were used for empirical research. The results show that this method exhibits superior performance in bearing fault diagnosis and has higher accuracy compared to traditional methods.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.