{"title":"Defect Engineering and Piezoelectrical Polarization Synergistically Assisted for Photoelectrochemical Sensing Based on CdS Nanowires","authors":"Yanhu Wang, Mengchun Yang, Shenguang Ge, Jinghua Yu","doi":"10.1002/adsr.202400019","DOIUrl":null,"url":null,"abstract":"<p>Developing progressive photoelectrochemical (PEC) techniques holds great potential for advancing analytical sensitivity in clinical. However, the low transport and separation of charge carrier efficiency and deficient active sites block efficient and durable PEC analytical performance features. And herein a piezo-assisted PEC sensing platform for glutathione (GSH) detection are successfully prepared based on S vacancies rich CdS (S<sub>v</sub>-CdS) nanowires. The collaboration of piezoelectric polarization and S vacancies engineering contributed to the boosted PEC performance by accelerating the spatial separation of photogenerated charges and providing abundant active sites. Moreover, the charge transfer efficiency further promoted with the introduction of GSH acted a hole scavenge that effectively suppresses the electron-hole recombination, giving rise to an amplified photocurrent. As a demonstration, the proposed method presents an outstanding analytical performance toward GSH. Consequently, this work provides an inspirable and convenient route for designing high-efficiency photoelectrode in PEC sensing in virtue of judicious structural, and defect engineering, and the exploring of an external-field-coupling-enhanced PEC platform.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400019","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Developing progressive photoelectrochemical (PEC) techniques holds great potential for advancing analytical sensitivity in clinical. However, the low transport and separation of charge carrier efficiency and deficient active sites block efficient and durable PEC analytical performance features. And herein a piezo-assisted PEC sensing platform for glutathione (GSH) detection are successfully prepared based on S vacancies rich CdS (Sv-CdS) nanowires. The collaboration of piezoelectric polarization and S vacancies engineering contributed to the boosted PEC performance by accelerating the spatial separation of photogenerated charges and providing abundant active sites. Moreover, the charge transfer efficiency further promoted with the introduction of GSH acted a hole scavenge that effectively suppresses the electron-hole recombination, giving rise to an amplified photocurrent. As a demonstration, the proposed method presents an outstanding analytical performance toward GSH. Consequently, this work provides an inspirable and convenient route for designing high-efficiency photoelectrode in PEC sensing in virtue of judicious structural, and defect engineering, and the exploring of an external-field-coupling-enhanced PEC platform.