An overlooked component of the meridional overturning circulation

IF 2.8 2区 地球科学 Q1 OCEANOGRAPHY Journal of Physical Oceanography Pub Date : 2024-06-13 DOI:10.1175/jpo-d-24-0019.1
M. Spall
{"title":"An overlooked component of the meridional overturning circulation","authors":"M. Spall","doi":"10.1175/jpo-d-24-0019.1","DOIUrl":null,"url":null,"abstract":"\nUpwelling along the western boundary of the major ocean basin subtropical gyres has been diagnosed in a wide range of ocean models and state estimates. This vertical transport is O(5×106 m3 s−1), which is of the same order of magnitude as the downward Ekman pumping across the subtropical gyres and zonally-integrated meridional overturning circulation. Two approaches are used here to understand the reason for this upwelling and how it depends on oceanic parameters. First, a kinematic model that imposes a density gradient along the western boundary demonstrates that there must be upwelling with a maximum vertical transport at mid-depths in order to maintain geostrophic balance in the western boundary current. The second approach considers the vorticity budget near the western boundary in an idealized primitive equation model of the wind- and buoyancy-forced subtropical and subpolar gyres. It is shown that a pressure gradient along the western boundary results in bottom pressure torque that injects vorticity into the fluid. This is balanced on the boundary by lateral viscous fluxes that redistribute this vorticity across the boundary current. The viscous fluxes in the interior are balanced primarily by vertical stretching of planetary vorticity, giving rise to upwelling within the boundary current. This process is found to be nearly adiabatic. Nonlinear terms and advection of planetary vorticity are also important locally but are not the ultimate drivers of the upwelling. Additional numerical model calculations demonstrate that the upwelling is a non-local consequence of buoyancy loss at high latitudes and thus represents an integral component of the meridional overturning circulation in depth-space but not in density-space.","PeriodicalId":56115,"journal":{"name":"Journal of Physical Oceanography","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jpo-d-24-0019.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Upwelling along the western boundary of the major ocean basin subtropical gyres has been diagnosed in a wide range of ocean models and state estimates. This vertical transport is O(5×106 m3 s−1), which is of the same order of magnitude as the downward Ekman pumping across the subtropical gyres and zonally-integrated meridional overturning circulation. Two approaches are used here to understand the reason for this upwelling and how it depends on oceanic parameters. First, a kinematic model that imposes a density gradient along the western boundary demonstrates that there must be upwelling with a maximum vertical transport at mid-depths in order to maintain geostrophic balance in the western boundary current. The second approach considers the vorticity budget near the western boundary in an idealized primitive equation model of the wind- and buoyancy-forced subtropical and subpolar gyres. It is shown that a pressure gradient along the western boundary results in bottom pressure torque that injects vorticity into the fluid. This is balanced on the boundary by lateral viscous fluxes that redistribute this vorticity across the boundary current. The viscous fluxes in the interior are balanced primarily by vertical stretching of planetary vorticity, giving rise to upwelling within the boundary current. This process is found to be nearly adiabatic. Nonlinear terms and advection of planetary vorticity are also important locally but are not the ultimate drivers of the upwelling. Additional numerical model calculations demonstrate that the upwelling is a non-local consequence of buoyancy loss at high latitudes and thus represents an integral component of the meridional overturning circulation in depth-space but not in density-space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
被忽视的经向翻转环流组成部分
各种海洋模式和状态估算都对沿主要大洋盆地副热带涡旋西部边界的上升流进行了诊断。这种垂直输送量为 O(5×106 m3 s-1),与副热带回旋的下行埃克曼泵和带状整合经向翻转环流的数量级相同。这里采用了两种方法来了解这种上升流的原因以及它如何取决于海洋参数。首先,一个沿西部边界施加密度梯度的运动学模型表明,为了维持西部边界洋流的地营平衡,必须有上升流,并在中深层有最大的垂直输送。第二种方法是在风力和浮力作用的副热带和副极地涡旋的理想化原始方程模型中考虑西部边界附近的涡度预算。研究表明,沿西部边界的压力梯度会产生底部压力扭矩,将涡度注入流体。这在边界上被横向粘性通量所平衡,这些粘性通量在边界流中重新分配涡度。内部的粘性通量主要通过行星涡度的垂直拉伸来平衡,从而在边界流内形成上涌。这一过程几乎是绝热的。非线性项和行星涡度的平流在局部也很重要,但不是上涌的最终驱动力。其他数值模式计算表明,上升流是高纬度浮力损失的非局部结果,因此是深度空间而非密度空间经向翻转环流的一个组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
20.00%
发文量
200
审稿时长
4.5 months
期刊介绍: The Journal of Physical Oceanography (JPO) (ISSN: 0022-3670; eISSN: 1520-0485) publishes research related to the physics of the ocean and to processes operating at its boundaries. Observational, theoretical, and modeling studies are all welcome, especially those that focus on elucidating specific physical processes. Papers that investigate interactions with other components of the Earth system (e.g., ocean–atmosphere, physical–biological, and physical–chemical interactions) as well as studies of other fluid systems (e.g., lakes and laboratory tanks) are also invited, as long as their focus is on understanding the ocean or its role in the Earth system.
期刊最新文献
Modulation of internal solitary waves by one mesoscale eddy pair west of the Luzon Strait The eastern Mediterranean boundary current: seasonality, stability, and spiral formation Tidal conversion into vertical normal modes by near-critical topography An overlooked component of the meridional overturning circulation Models of the sea-surface height expression of the internal-wave continuum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1