Definition and Application of a Target Cascading Process on a Fully Trimmed Body, from Vehicle Objectives to Component Objectives

Cyril de Walque, Ji Woo Yoo, ChanHee Jeong, Taesik Kong
{"title":"Definition and Application of a Target Cascading Process on a Fully Trimmed Body, from Vehicle Objectives to Component Objectives","authors":"Cyril de Walque, Ji Woo Yoo, ChanHee Jeong, Taesik Kong","doi":"10.4271/2024-01-2916","DOIUrl":null,"url":null,"abstract":"Finite element (FE) based simulations for fully trimmed bodies are a key tool in the automotive industry to predict and understand the Noise, Vibration and Harshness (NVH) behavior of a complete car. While structural and acoustic transfer functions are nowadays straightforward to obtain from such models, the comprehensive understanding of the intrinsic behavior of the complete car is more complex to achieve, in particular when it comes to the contribution of each sub-part to the global response. This paper proposes a complete target cascading process, which first assesses which sub-part of the car is the most contributing to the interior noise, then decomposes the total structure-borne acoustic transfer function into several intermediate transfer functions, allowing to better understand the effect of local design changes. This transfer functions decomposition opens the door to cascading full-vehicle objectives, which typically consists of achieving a maximal noise level in the cabin, to component-level objectives. This process is demonstrated on the floor panel of an industrial FE model for which both the structural and acoustic transfer functions have been extensively validated against measurements. Intermediate transfer functions are computed and compared for several alternative designs. The same process is finally applied on reduced models, which consider only the floor panels and acoustic trims. Those reduced models allow much faster design iterations and prove to be reliably predicting trends.","PeriodicalId":510086,"journal":{"name":"SAE Technical Paper Series","volume":"53 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE Technical Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2024-01-2916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Finite element (FE) based simulations for fully trimmed bodies are a key tool in the automotive industry to predict and understand the Noise, Vibration and Harshness (NVH) behavior of a complete car. While structural and acoustic transfer functions are nowadays straightforward to obtain from such models, the comprehensive understanding of the intrinsic behavior of the complete car is more complex to achieve, in particular when it comes to the contribution of each sub-part to the global response. This paper proposes a complete target cascading process, which first assesses which sub-part of the car is the most contributing to the interior noise, then decomposes the total structure-borne acoustic transfer function into several intermediate transfer functions, allowing to better understand the effect of local design changes. This transfer functions decomposition opens the door to cascading full-vehicle objectives, which typically consists of achieving a maximal noise level in the cabin, to component-level objectives. This process is demonstrated on the floor panel of an industrial FE model for which both the structural and acoustic transfer functions have been extensively validated against measurements. Intermediate transfer functions are computed and compared for several alternative designs. The same process is finally applied on reduced models, which consider only the floor panels and acoustic trims. Those reduced models allow much faster design iterations and prove to be reliably predicting trends.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从整车目标到部件目标的全修整车身目标级联过程的定义和应用
基于有限元(FE)的全修整车身模拟是汽车行业预测和了解整车噪声、振动和声振粗糙度(NVH)行为的关键工具。虽然结构和声学传递函数如今可以直接从此类模型中获得,但要全面了解整车的内在行为却较为复杂,尤其是当涉及到每个子部件对整体响应的贡献时。本文提出了一个完整的目标级联过程,首先评估汽车的哪个子部件对车内噪声的贡献最大,然后将总的结构声学传递函数分解为多个中间传递函数,从而更好地理解局部设计变更的影响。这种传递函数分解为逐级实现全车目标(通常包括实现车厢内的最大噪音水平)和部件级目标打开了大门。我们在一个工业 FE 模型的底板上演示了这一过程,该模型的结构和声学传递函数已根据测量结果进行了广泛验证。对几种备选设计的中间传递函数进行了计算和比较。最后,同样的过程被应用于简化模型,即只考虑楼板和声学装饰。这些简化模型可以更快地进行设计迭代,并能可靠地预测趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal coupled structural analysis of a brake disc Development of Brake Shoe with Carbon Footprint Reduction Emergency Braking System: Verification of system behavior on commercial vehicles equipped with drum braking system Assets Maintenance Strategy Based on Operational Data Analysis Microstructural Analysis and Tribological Performance of Composite Iron Sulfides in Automotive Brake Pads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1