Biosynthesis of Fe/Pd Bimetallic Nanoparticles and Used for Removal of Synthetic Oily Wastewater

Ahmed K. Hassan, Luay Q. Hashim, A. M. Rezooqi, M. F. Hashim
{"title":"Biosynthesis of Fe/Pd Bimetallic Nanoparticles and Used for Removal of Synthetic Oily Wastewater","authors":"Ahmed K. Hassan, Luay Q. Hashim, A. M. Rezooqi, M. F. Hashim","doi":"10.52716/jprs.v14i2.867","DOIUrl":null,"url":null,"abstract":"Eucalyptus plant leaves aqueous extract was used to produce a green bimetallic Fe/Pd nanoparticles (G-Fe/Pd NPs) catalyst for the degradation of synthetic oily effluent. Using Brunauer-Emmett-Teller (BET) analysis, Fourier-transform infrared spectroscopy (FTIR), particle size, and a zeta potential analyzer, the synthesized G Fe/Pd NPs were evaluated. G-Fe/Pd NPs have been found to contain nanoparticles, with a mean size of 182 nm and a surface area of 5.106 m2/g. The resulting nanoparticles were then used as a catalyst for a Fenton-like reaction. The amount of green catalyst G-Fe/Pd NPs (0.125-0.5 g/L), H2O2 concentration (15-37.5 mmol/L), pH (3-7), and temperature (25-45°C) all have a significant impact on the degradation efficiency of synthetic oily wastewater. Batch experiments showed that 88.9% degraded chemical oxygen demand (COD) from synthetic oily wastewater within the optimum conditions of peroxide concentration, catalyst dose, pH, and temperature which were 30.0 mmol/L, 0.375 g/L, 3, and 45℃ respectively along with 60 min contact time. The results of kinetic models showed that oily wastewater removal followed the Behnajady-Modirshahla-Ghanbary (BMG) model. Finally, the thermodynamic study of the reaction was also examined and concluded to endothermic reaction with an enthalpy of 37.39 kJ/mol.","PeriodicalId":16710,"journal":{"name":"Journal of Petroleum Research and Studies","volume":"139 35","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Research and Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52716/jprs.v14i2.867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Eucalyptus plant leaves aqueous extract was used to produce a green bimetallic Fe/Pd nanoparticles (G-Fe/Pd NPs) catalyst for the degradation of synthetic oily effluent. Using Brunauer-Emmett-Teller (BET) analysis, Fourier-transform infrared spectroscopy (FTIR), particle size, and a zeta potential analyzer, the synthesized G Fe/Pd NPs were evaluated. G-Fe/Pd NPs have been found to contain nanoparticles, with a mean size of 182 nm and a surface area of 5.106 m2/g. The resulting nanoparticles were then used as a catalyst for a Fenton-like reaction. The amount of green catalyst G-Fe/Pd NPs (0.125-0.5 g/L), H2O2 concentration (15-37.5 mmol/L), pH (3-7), and temperature (25-45°C) all have a significant impact on the degradation efficiency of synthetic oily wastewater. Batch experiments showed that 88.9% degraded chemical oxygen demand (COD) from synthetic oily wastewater within the optimum conditions of peroxide concentration, catalyst dose, pH, and temperature which were 30.0 mmol/L, 0.375 g/L, 3, and 45℃ respectively along with 60 min contact time. The results of kinetic models showed that oily wastewater removal followed the Behnajady-Modirshahla-Ghanbary (BMG) model. Finally, the thermodynamic study of the reaction was also examined and concluded to endothermic reaction with an enthalpy of 37.39 kJ/mol.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物合成铁/钯双金属纳米粒子并用于去除合成含油废水
利用桉树叶水提取物生产了一种绿色双金属铁/钯纳米粒子(G-Fe/Pd NPs)催化剂,用于降解合成油污水。利用布鲁瑙尔-艾美特-泰勒(BET)分析、傅立叶变换红外光谱(FTIR)、粒度和 zeta 电位分析仪对合成的 G Fe/Pd NPs 进行了评估。结果发现,G-Fe/Pd NPs 中含有纳米颗粒,平均粒径为 182 nm,表面积为 5.106 m2/g。由此产生的纳米颗粒被用作类似芬顿反应的催化剂。绿色催化剂 G-Fe/Pd NPs 的用量(0.125-0.5 g/L)、H2O2 浓度(15-37.5 mmol/L)、pH 值(3-7)和温度(25-45°C)都对合成含油废水的降解效率有显著影响。批量实验表明,在过氧化物浓度、催化剂剂量、pH 值和温度分别为 30.0 mmol/L、0.375 g/L、3 和 45℃的最佳条件下,以及在 60 分钟的接触时间内,合成含油废水的化学需氧量(COD)降解率为 88.9%。动力学模型的结果表明,含油废水的去除遵循 Behnajady-Modirshahla-Ghanbary (BMG)模型。最后,还对反应进行了热力学研究,得出的结论是反应为内热反应,焓值为 37.39 kJ/mol。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Iraq Crude Oil Exports- July, August, September, October, November, December/ 2022 Biosynthesis of Fe/Pd Bimetallic Nanoparticles and Used for Removal of Synthetic Oily Wastewater A Regional Static Model of the Dammam Aquifer as a Source of Injection Water, Southern Iraq Effect of the Deep Marin Balambo Formation on the Qamchuqa Reservoirs in Jambur Field Converting of Waste Crude Oil of East Baghdad Oil Field into Light Hydrocarbons Using Thermal Cracking Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1