Improving tubular protonic ceramic fuel cell performance by compensating Ba evaporation via a Ba-excess optimized proton conducting electrolyte synthesis strategy

Youdong Kim, InHo Kim, C. Meisel, C. Herradón, Peter Rand, Jayoon Yang, Hyun Sik Kim, Neal Sullivan, R. O’Hayre
{"title":"Improving tubular protonic ceramic fuel cell performance by compensating Ba evaporation via a Ba-excess optimized proton conducting electrolyte synthesis strategy","authors":"Youdong Kim, InHo Kim, C. Meisel, C. Herradón, Peter Rand, Jayoon Yang, Hyun Sik Kim, Neal Sullivan, R. O’Hayre","doi":"10.1088/2515-7655/ad5760","DOIUrl":null,"url":null,"abstract":"\n Protonic ceramic fuel cells (PCFCs) are emerging as a promising technology for reduced temperature ceramic energy conversion devices. The BaCe0.4Zr0.4Y0.1Yb0.1O3−δ (BCZYYb4411) electrolyte is notable for its high proton conductivity. However, the tendency of barium to volatilize in BCZYYb4411 during high-temperature sintering compromises its chemical stability and performance. This study investigates the effects of intentionally incorporating excess barium into BCZYYb4411, formulated as Ba1+xCe0.4Zr0.4Y0.1Yb0.1O3−δ (where x = 0, 0.1, 0.2, and 0.3), with the aim of compensating barium evaporation and enhancing the physical and chemical properties. We find that excess barium results in a greater shrinkage rate, facilitating a denser electrolyte structure. This barium-enriched electrolyte demonstrates improved electrochemical performance by effectively counteracting the deleterious effects of barium evaporation. Applying this strategy to tubular PCFCs, we achieved a peak power density of 480 mW/cm² at 600 °C. This unique approach provides a simple, tunable, and easy-to-implement processing modification to achieve high-performance tubular PCFC.","PeriodicalId":509250,"journal":{"name":"Journal of Physics: Energy","volume":"108 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2515-7655/ad5760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Protonic ceramic fuel cells (PCFCs) are emerging as a promising technology for reduced temperature ceramic energy conversion devices. The BaCe0.4Zr0.4Y0.1Yb0.1O3−δ (BCZYYb4411) electrolyte is notable for its high proton conductivity. However, the tendency of barium to volatilize in BCZYYb4411 during high-temperature sintering compromises its chemical stability and performance. This study investigates the effects of intentionally incorporating excess barium into BCZYYb4411, formulated as Ba1+xCe0.4Zr0.4Y0.1Yb0.1O3−δ (where x = 0, 0.1, 0.2, and 0.3), with the aim of compensating barium evaporation and enhancing the physical and chemical properties. We find that excess barium results in a greater shrinkage rate, facilitating a denser electrolyte structure. This barium-enriched electrolyte demonstrates improved electrochemical performance by effectively counteracting the deleterious effects of barium evaporation. Applying this strategy to tubular PCFCs, we achieved a peak power density of 480 mW/cm² at 600 °C. This unique approach provides a simple, tunable, and easy-to-implement processing modification to achieve high-performance tubular PCFC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 Ba-excess 优化质子传导电解质合成策略补偿 Ba 蒸发,提高管式质子陶瓷燃料电池的性能
质子陶瓷燃料电池(PCFCs)是一种新兴的降温陶瓷能源转换设备技术,具有广阔的发展前景。BaCe0.4Zr0.4Y0.1Yb0.1O3-δ(BCZYYb4411)电解质以其高质子传导性而著称。然而,在高温烧结过程中,BCZYYb4411 中的钡易挥发,影响了其化学稳定性和性能。本研究调查了有意在 BCZYYb4411(配方为 Ba1+xCe0.4Zr0.4Y0.1Yb0.1O3-δ,其中 x = 0、0.1、0.2 和 0.3)中加入过量钡的影响,目的是补偿钡的挥发并提高其物理和化学特性。我们发现,过量的钡会导致更大的收缩率,从而使电解质结构更加致密。这种富钡电解质通过有效抵消钡蒸发的有害影响,改善了电化学性能。将这一策略应用于管状 PCFC,我们在 600 °C 时实现了 480 mW/cm² 的峰值功率密度。这种独特的方法为实现高性能管状 PCFC 提供了一种简单、可调且易于实施的加工改性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced rate capability and capacity of LIB full cells achieved through aerosol jet printing Radiation versus environmental degradation in unencapsulated metal halide perovskite solar cells Grain boundaries are not the source of Urbach tails in Cu(In,Ga)Se2 absorbers Comprehensive review and future perspectives: 3D printing technology for all types of solid oxide cells Fuel starvation in automotive PEMFC stacks: hydrogen stoichiometry and electric cell-to-cell interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1