Improving tubular protonic ceramic fuel cell performance by compensating Ba evaporation via a Ba-excess optimized proton conducting electrolyte synthesis strategy
Youdong Kim, InHo Kim, C. Meisel, C. Herradón, Peter Rand, Jayoon Yang, Hyun Sik Kim, Neal Sullivan, R. O’Hayre
{"title":"Improving tubular protonic ceramic fuel cell performance by compensating Ba evaporation via a Ba-excess optimized proton conducting electrolyte synthesis strategy","authors":"Youdong Kim, InHo Kim, C. Meisel, C. Herradón, Peter Rand, Jayoon Yang, Hyun Sik Kim, Neal Sullivan, R. O’Hayre","doi":"10.1088/2515-7655/ad5760","DOIUrl":null,"url":null,"abstract":"\n Protonic ceramic fuel cells (PCFCs) are emerging as a promising technology for reduced temperature ceramic energy conversion devices. The BaCe0.4Zr0.4Y0.1Yb0.1O3−δ (BCZYYb4411) electrolyte is notable for its high proton conductivity. However, the tendency of barium to volatilize in BCZYYb4411 during high-temperature sintering compromises its chemical stability and performance. This study investigates the effects of intentionally incorporating excess barium into BCZYYb4411, formulated as Ba1+xCe0.4Zr0.4Y0.1Yb0.1O3−δ (where x = 0, 0.1, 0.2, and 0.3), with the aim of compensating barium evaporation and enhancing the physical and chemical properties. We find that excess barium results in a greater shrinkage rate, facilitating a denser electrolyte structure. This barium-enriched electrolyte demonstrates improved electrochemical performance by effectively counteracting the deleterious effects of barium evaporation. Applying this strategy to tubular PCFCs, we achieved a peak power density of 480 mW/cm² at 600 °C. This unique approach provides a simple, tunable, and easy-to-implement processing modification to achieve high-performance tubular PCFC.","PeriodicalId":509250,"journal":{"name":"Journal of Physics: Energy","volume":"108 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2515-7655/ad5760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Protonic ceramic fuel cells (PCFCs) are emerging as a promising technology for reduced temperature ceramic energy conversion devices. The BaCe0.4Zr0.4Y0.1Yb0.1O3−δ (BCZYYb4411) electrolyte is notable for its high proton conductivity. However, the tendency of barium to volatilize in BCZYYb4411 during high-temperature sintering compromises its chemical stability and performance. This study investigates the effects of intentionally incorporating excess barium into BCZYYb4411, formulated as Ba1+xCe0.4Zr0.4Y0.1Yb0.1O3−δ (where x = 0, 0.1, 0.2, and 0.3), with the aim of compensating barium evaporation and enhancing the physical and chemical properties. We find that excess barium results in a greater shrinkage rate, facilitating a denser electrolyte structure. This barium-enriched electrolyte demonstrates improved electrochemical performance by effectively counteracting the deleterious effects of barium evaporation. Applying this strategy to tubular PCFCs, we achieved a peak power density of 480 mW/cm² at 600 °C. This unique approach provides a simple, tunable, and easy-to-implement processing modification to achieve high-performance tubular PCFC.