{"title":"SCAPS-1D simulation and optimization of an organic solar cell","authors":"Andreea-Georgiana Ulăreanu, Andrei Drăgulinescu","doi":"10.1117/12.3021754","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to characterize, simulate and optimize the performance characteristics of an organic solar cell. The software resource SCAPS-1D was used to evaluate the characteristics of this organic solar cell, for different values of the most representative device performance parameters (such as the thickness of the organic layer and of the other layers that make up the solar cell, the intensity of light incident on the surface of the device, the electron affinity, etc.) and of the parameters that model the factors that diminish its performance (the density of defects that can appear inside the absorber material, and the effects of increasing the working temperature). The structure of the photovoltaic device was modeled, and characteristics and quantities such as I-V (intensity vs. voltage) characteristic in light and dark conditions, respectively, open-circuit voltage, short-circuit intensity, fill factor, power conversion efficiency and others were simulated and interpreted. By a careful choice of parameters, an improvement of the efficiency of the cell was obtained, from 10.17% to 16.93%. The proposed solar cell can be further optimized by modifying other parameters and properties of the cell layers, while maintaining a good stability performance of the solar cell.","PeriodicalId":198425,"journal":{"name":"Other Conferences","volume":"70 2","pages":"131870A - 131870A-7"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Other Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3021754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to characterize, simulate and optimize the performance characteristics of an organic solar cell. The software resource SCAPS-1D was used to evaluate the characteristics of this organic solar cell, for different values of the most representative device performance parameters (such as the thickness of the organic layer and of the other layers that make up the solar cell, the intensity of light incident on the surface of the device, the electron affinity, etc.) and of the parameters that model the factors that diminish its performance (the density of defects that can appear inside the absorber material, and the effects of increasing the working temperature). The structure of the photovoltaic device was modeled, and characteristics and quantities such as I-V (intensity vs. voltage) characteristic in light and dark conditions, respectively, open-circuit voltage, short-circuit intensity, fill factor, power conversion efficiency and others were simulated and interpreted. By a careful choice of parameters, an improvement of the efficiency of the cell was obtained, from 10.17% to 16.93%. The proposed solar cell can be further optimized by modifying other parameters and properties of the cell layers, while maintaining a good stability performance of the solar cell.