Low-temperature chemical vapor deposition growth of 2D materials

Electron Pub Date : 2024-06-12 DOI:10.1002/elt2.43
Minting Lei, Peijian Wang, Xiaofeng Ke, Jun Xie, Min Yue, Mei Zhao, Kenan Zhang, Youqing Dong, Quanlong Xu, Chao Zou, Shun Wang, Lijie Zhang
{"title":"Low-temperature chemical vapor deposition growth of 2D materials","authors":"Minting Lei,&nbsp;Peijian Wang,&nbsp;Xiaofeng Ke,&nbsp;Jun Xie,&nbsp;Min Yue,&nbsp;Mei Zhao,&nbsp;Kenan Zhang,&nbsp;Youqing Dong,&nbsp;Quanlong Xu,&nbsp;Chao Zou,&nbsp;Shun Wang,&nbsp;Lijie Zhang","doi":"10.1002/elt2.43","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional (2D) materials have atomic thickness, and thickness-dependent electronic transport, optical and thermal properties, highlighting great promise applications in future semiconductor devices. Chemical vapor deposition (CVD) is considered as an industry-oriented method for macro-synthesis of 2D materials. In conventional CVD, high temperatures are required for the synthesis of high-quality large-size 2D materials, which is incompatible with of back-end-of-line of the complementary metal oxide semiconductor (CMOS) techniques. Therefore, low-temperature synthesis of 2D materials is of critical importance for the advancement toward practical applications of 2D materials with the CMOS technologies. In this review, we focus on strategies for the low-temperature growth of 2D materials, including the use of low-melting-point precursors, metal-organic CVD, plasma-enhanced CVD, van der Waals-substrate vapor phase epitaxy, tellurium-assisted CVD, salt-assisted CVD, etc., with discussions of their reaction mechanisms, applications, associated advantages, and limitations. We also provide an outlook and perspectives of future low-temperature chemical vapor deposition growth of 2D materials.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.43","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elt2.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) materials have atomic thickness, and thickness-dependent electronic transport, optical and thermal properties, highlighting great promise applications in future semiconductor devices. Chemical vapor deposition (CVD) is considered as an industry-oriented method for macro-synthesis of 2D materials. In conventional CVD, high temperatures are required for the synthesis of high-quality large-size 2D materials, which is incompatible with of back-end-of-line of the complementary metal oxide semiconductor (CMOS) techniques. Therefore, low-temperature synthesis of 2D materials is of critical importance for the advancement toward practical applications of 2D materials with the CMOS technologies. In this review, we focus on strategies for the low-temperature growth of 2D materials, including the use of low-melting-point precursors, metal-organic CVD, plasma-enhanced CVD, van der Waals-substrate vapor phase epitaxy, tellurium-assisted CVD, salt-assisted CVD, etc., with discussions of their reaction mechanisms, applications, associated advantages, and limitations. We also provide an outlook and perspectives of future low-temperature chemical vapor deposition growth of 2D materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维材料的低温化学气相沉积生长
二维(2D)材料具有原子厚度,并具有与厚度相关的电子传输、光学和热学特性,在未来半导体器件中的应用前景十分广阔。化学气相沉积(CVD)被认为是一种面向工业的二维材料宏观合成方法。在传统的化学气相沉积法中,合成高质量的大尺寸二维材料需要高温,这与互补金属氧化物半导体(CMOS)技术的后端线不兼容。因此,低温合成二维材料对于推动二维材料与 CMOS 技术的实际应用至关重要。在这篇综述中,我们重点介绍了二维材料的低温生长策略,包括使用低熔点前驱体、金属有机 CVD、等离子体增强 CVD、范德华-基底气相外延、碲辅助 CVD、盐辅助 CVD 等,并讨论了它们的反应机理、应用、相关优势和局限性。我们还对未来二维材料的低温化学气相沉积生长进行了展望和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Cover Image, Volume 3, Number 1, February Issue Information Cover Image, Volume 2, Number 4, November 2024 Cover Image, Volume 2, Number 4, November 2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1