Development of a Precise Tree Structure from LiDAR Point Clouds

Abdul Nurunnabi, Felicia Teferle, D. Laefer, Meida Chen, Mir Masoom Ali
{"title":"Development of a Precise Tree Structure from LiDAR Point Clouds","authors":"Abdul Nurunnabi, Felicia Teferle, D. Laefer, Meida Chen, Mir Masoom Ali","doi":"10.5194/isprs-archives-xlviii-2-2024-301-2024","DOIUrl":null,"url":null,"abstract":"Abstract. A precise tree structure that represents the distribution of tree stem, branches, and leaves is crucial for accurately capturing the full representation of a tree. Light Detection and Ranging (LiDAR)-based three-dimensional (3D) point clouds (PCs) capture the geometry of scanned objects including forests stands and individual trees. PCs are irregular, unstructured, often noisy, and contaminated by outliers. Researchers have struggled to develop methods to separate leaves and wood without losing the tree geometry. This paper proposes a solution that employs only the spatial coordinates (x, y, z) of the PC. The new algorithm works as a filtering approach, utilizing multi-scale neighborhood-based geometric features (GFs) e.g., linearity, planarity, and verticality to classify linear (wood) and non-linear (leaf) points. This involves finding potential wood points and coupling them with an octree-based segmentation to develop a tree architecture. The main contributions of this paper are (i) investigating the potential of different GFs to split linear and non-linear points, (ii) introducing a novel method that pointwise classifies leaf and wood points, and (iii) developing a precise 3D tree structure. The performance of the new algorithm has been demonstrated through terrestrial laser scanning PCs. For a Scots pine tree, the new method classifies leaf and wood points with an overall accuracy of 97.9%.\n","PeriodicalId":505918,"journal":{"name":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":"9 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-2-2024-301-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. A precise tree structure that represents the distribution of tree stem, branches, and leaves is crucial for accurately capturing the full representation of a tree. Light Detection and Ranging (LiDAR)-based three-dimensional (3D) point clouds (PCs) capture the geometry of scanned objects including forests stands and individual trees. PCs are irregular, unstructured, often noisy, and contaminated by outliers. Researchers have struggled to develop methods to separate leaves and wood without losing the tree geometry. This paper proposes a solution that employs only the spatial coordinates (x, y, z) of the PC. The new algorithm works as a filtering approach, utilizing multi-scale neighborhood-based geometric features (GFs) e.g., linearity, planarity, and verticality to classify linear (wood) and non-linear (leaf) points. This involves finding potential wood points and coupling them with an octree-based segmentation to develop a tree architecture. The main contributions of this paper are (i) investigating the potential of different GFs to split linear and non-linear points, (ii) introducing a novel method that pointwise classifies leaf and wood points, and (iii) developing a precise 3D tree structure. The performance of the new algorithm has been demonstrated through terrestrial laser scanning PCs. For a Scots pine tree, the new method classifies leaf and wood points with an overall accuracy of 97.9%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用激光雷达点云开发精确的树形结构
摘要要准确捕捉树木的全貌,就必须有一个精确的树形结构来表示树干、树枝和树叶的分布。基于光探测和测距(LiDAR)的三维(3D)点云(PCs)可以捕捉扫描对象的几何形状,包括林分和单棵树木。点云不规则、无结构、经常有噪声并受到异常值的污染。研究人员一直在努力开发既能分离树叶和木材,又不会丢失树木几何形状的方法。本文提出了一种仅使用 PC 空间坐标(x、y、z)的解决方案。新算法作为一种过滤方法,利用基于多尺度邻域的几何特征(GFs),如线性、平面度和垂直度,对线性点(木头)和非线性点(树叶)进行分类。这涉及到寻找潜在的木点,并将它们与基于八度分割的方法结合起来,从而开发出一种树形结构。本文的主要贡献在于:(i) 研究了不同 GF 分割线性点和非线性点的潜力;(ii) 引入了一种新方法,对树叶点和树林点进行点分类;(iii) 开发了一种精确的三维树结构。新算法的性能已通过地面激光扫描 PC 进行了验证。对于一棵苏格兰松树,新方法对树叶和木材点进行分类的总体准确率为 97.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The 19th 3D GeoInfo Conference: Preface Archives Monitoring Time-Varying Changes of Historic Structures Through Photogrammetry-Driven Digital Twinning Multimedia Photogrammetry for Automated 3D Monitoring in Archaeological Waterlogged Wood Conservation Efficient Calculation of Multi-Scale Features for MMS Point Clouds Concepts for compensation of wave effects when measuring through water surfaces in photogrammetric applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1