Extraction of block walls from point clouds measured by Mobile Mapping System

Taiga Odaka, Hiroki Harada, Kei Otomo, Kiichiro Ishikawa
{"title":"Extraction of block walls from point clouds measured by Mobile Mapping System","authors":"Taiga Odaka, Hiroki Harada, Kei Otomo, Kiichiro Ishikawa","doi":"10.5194/isprs-archives-xlviii-2-2024-309-2024","DOIUrl":null,"url":null,"abstract":"Abstract. To solve the problem of collapsing block walls widely used in Japan, this study proposes a method for extracting block walls using 3D point cloud data measured by the Mobile Mapping System (MMS). Unlike conventional methods, this method identifies block walls based on geometric features without relying on MMS trajectory data or deep learning inference results. In addition, the computational load is low and manual correction can be minimized. In our experiments, we used point cloud data collected in urban areas in Japan and achieved a precision of 0.750, recall of 0.810, and F-measure of 0.779. The results demonstrate the effectiveness of this method for automatic extraction of block walls and rapid assessment of collapse risk and are expected to contribute to safety measures in areas with high seismic risk.\n","PeriodicalId":505918,"journal":{"name":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":"27 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-2-2024-309-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. To solve the problem of collapsing block walls widely used in Japan, this study proposes a method for extracting block walls using 3D point cloud data measured by the Mobile Mapping System (MMS). Unlike conventional methods, this method identifies block walls based on geometric features without relying on MMS trajectory data or deep learning inference results. In addition, the computational load is low and manual correction can be minimized. In our experiments, we used point cloud data collected in urban areas in Japan and achieved a precision of 0.750, recall of 0.810, and F-measure of 0.779. The results demonstrate the effectiveness of this method for automatic extraction of block walls and rapid assessment of collapse risk and are expected to contribute to safety measures in areas with high seismic risk.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从移动测绘系统测量的点云中提取砌块墙体
摘要为解决日本广泛使用的砌块墙倒塌问题,本研究提出了一种利用移动测绘系统(MMS)测量的三维点云数据提取砌块墙的方法。与传统方法不同,该方法无需依赖移动测绘系统的轨迹数据或深度学习推理结果,而是根据几何特征识别砌块墙。此外,该方法的计算负荷低,可最大限度地减少人工校正。在实验中,我们使用了在日本城市地区收集的点云数据,精确度达到了 0.750,召回率为 0.810,F-measure 为 0.779。这些结果证明了该方法在自动提取砌块墙体和快速评估倒塌风险方面的有效性,并有望为地震高风险地区的安全措施做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The 19th 3D GeoInfo Conference: Preface Archives Monitoring Time-Varying Changes of Historic Structures Through Photogrammetry-Driven Digital Twinning Multimedia Photogrammetry for Automated 3D Monitoring in Archaeological Waterlogged Wood Conservation Efficient Calculation of Multi-Scale Features for MMS Point Clouds Concepts for compensation of wave effects when measuring through water surfaces in photogrammetric applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1