Creating High Aspect Ratio Magnetostrictive Flakes to Enhance Magnetoelectric Polymer Composites

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-06-11 DOI:10.1021/acsaelm.4c00594
Andrew D. M. Charles*, Andrew N. Rider, Sonya A. Brown and Chun H. Wang, 
{"title":"Creating High Aspect Ratio Magnetostrictive Flakes to Enhance Magnetoelectric Polymer Composites","authors":"Andrew D. M. Charles*,&nbsp;Andrew N. Rider,&nbsp;Sonya A. Brown and Chun H. Wang,&nbsp;","doi":"10.1021/acsaelm.4c00594","DOIUrl":null,"url":null,"abstract":"<p >Polymer-based magnetoelectric materials form a technologically significant class of magneto-polymer composites which show promise for the production of low-cost and mechanically durable sensors, energy harvesters, and transducers. The use of a particle magnetostrictive phase in these composites offers a scalable path to producing large-area magnetoelectric materials and, so, is highly attractive. A key challenge for these composites is improving the coupling between the particle and polymer phases. In this work, we explore the use of shape anisotropy in galfenol flake particles as a means of bestowing magnetoelectric anisotropy. Cryogenic ball milling is used as a means to produce particulates, which are distributed and aligned in P(VDF-TrFE) composite films. A direction-specific, bias-free magnetoelectric coupling as high as 46.27 mV/cm·Oe was achieved. The use of this material in an energy harvesting device yielded peak energy harvesting power densities of 46.97 and 2.03 μW/cm<sup>3</sup> for vibrational and magnetic fields, respectively.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c00594","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer-based magnetoelectric materials form a technologically significant class of magneto-polymer composites which show promise for the production of low-cost and mechanically durable sensors, energy harvesters, and transducers. The use of a particle magnetostrictive phase in these composites offers a scalable path to producing large-area magnetoelectric materials and, so, is highly attractive. A key challenge for these composites is improving the coupling between the particle and polymer phases. In this work, we explore the use of shape anisotropy in galfenol flake particles as a means of bestowing magnetoelectric anisotropy. Cryogenic ball milling is used as a means to produce particulates, which are distributed and aligned in P(VDF-TrFE) composite films. A direction-specific, bias-free magnetoelectric coupling as high as 46.27 mV/cm·Oe was achieved. The use of this material in an energy harvesting device yielded peak energy harvesting power densities of 46.97 and 2.03 μW/cm3 for vibrational and magnetic fields, respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
创建高纵横比磁致伸缩薄片以增强磁电聚合物复合材料的性能
聚合物基磁电材料是一类具有重要技术意义的磁聚合物复合材料,有望用于生产成本低廉、机械耐用的传感器、能量收集器和换能器。在这些复合材料中使用颗粒磁致伸缩相为生产大面积磁电材料提供了一条可扩展的途径,因此极具吸引力。这些复合材料面临的一个关键挑战是改善颗粒与聚合物相之间的耦合。在这项工作中,我们探讨了如何利用 galfenol 片状颗粒的形状各向异性来赋予其磁电各向异性。我们采用低温球磨法生产微粒,微粒在 P(VDF-TrFE)复合薄膜中分布和排列。这种材料实现了高达 46.27 mV/cm-Oe 的特定方向无偏压磁电耦合。在能量收集装置中使用这种材料,振动场和磁场的峰值能量收集功率密度分别为 46.97 和 2.03 μW/cm3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Issue Publication Information Issue Editorial Masthead Room Temperature Real Air Highly Sensitive and Selective Detection of Ethanol and Ammonia Molecules Using Tin Nanoparticle-Functionalized Graphene Sensors Two-Dimensional Magnetic Semiconductors by Substitutional Doping of Monolayer PtS2 Green Durable Biomechanical Sensor Based on a Cation-Enhanced Hydrogel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1