Tsuyoshi Kato, Shintaro Takahashi, A. Baceiredo, N. Saffon‐Merceron
{"title":"Hydrosilylation Reactions with a Dihydrosilylium Ion Stabilized by Coordination of a σ‐Donating Ni(0) Ligand","authors":"Tsuyoshi Kato, Shintaro Takahashi, A. Baceiredo, N. Saffon‐Merceron","doi":"10.1002/zaac.202400062","DOIUrl":null,"url":null,"abstract":"The hydrosilylation reactions of dihydrosilylium ion, stabilized by coordination of a σ‐donating Ni(0) fragment, has been investigated. This complex with two reactive sites, dihydrosilylium and Ni(0) centers, readily reacts with diphenylacetylene via a selective mono‐hydrosilylation reaction to afford the corresponding Ni(0)‐stabilized (hydro)(vinyl)silylium ion. In the case of ethylene, three equivalents of olefin are consumed to give a cationic Ni(II)‐complex featuring a Bu‐Si+‐NiII‐Et moiety with a NHC‐supported Si atom. DFT calculations indicate that the hydrosilylation proceeds by a classical (Chalk‐Harrod type) mechanism with the assistance of NHC ligand moving between Si and Ni centers according to their stabilization requirements.","PeriodicalId":23934,"journal":{"name":"Zeitschrift für anorganische und allgemeine Chemie","volume":"72 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für anorganische und allgemeine Chemie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zaac.202400062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The hydrosilylation reactions of dihydrosilylium ion, stabilized by coordination of a σ‐donating Ni(0) fragment, has been investigated. This complex with two reactive sites, dihydrosilylium and Ni(0) centers, readily reacts with diphenylacetylene via a selective mono‐hydrosilylation reaction to afford the corresponding Ni(0)‐stabilized (hydro)(vinyl)silylium ion. In the case of ethylene, three equivalents of olefin are consumed to give a cationic Ni(II)‐complex featuring a Bu‐Si+‐NiII‐Et moiety with a NHC‐supported Si atom. DFT calculations indicate that the hydrosilylation proceeds by a classical (Chalk‐Harrod type) mechanism with the assistance of NHC ligand moving between Si and Ni centers according to their stabilization requirements.