Optimizing the Corrosion Resistance of Cold Spraying Additive Manufactured FeCoNiCrMn High Entropy Alloy: Improving Particle Bonding Quality Through Heat Treatment

IF 3.2 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS Journal of Thermal Spray Technology Pub Date : 2024-06-11 DOI:10.1007/s11666-024-01791-7
Dong Wu, Wenya Li, Yaxin Xu, Xiawei Yang, Yu Su
{"title":"Optimizing the Corrosion Resistance of Cold Spraying Additive Manufactured FeCoNiCrMn High Entropy Alloy: Improving Particle Bonding Quality Through Heat Treatment","authors":"Dong Wu,&nbsp;Wenya Li,&nbsp;Yaxin Xu,&nbsp;Xiawei Yang,&nbsp;Yu Su","doi":"10.1007/s11666-024-01791-7","DOIUrl":null,"url":null,"abstract":"<div><p>The cumulative deposition characteristic of deformed particles in the cold spray (CSAM) deposits forms unique open pore microstructure and poor bonding quality, which has great influence on the corrosion resistance. This study investigates the influence of heat treatment (HT) on the corrosion and wear behaviors of CSAM FeCoNiCrMn high entropy alloy. The results show that HT improves the bonding quality between particles, turning open micro-pores into closed, and ultimately greatly improves the corrosion resistance, which can reach the level of traditional additive manufacturing and as-cast materials. The wear resistance of the CSAM deposit after HT is improved, and the layer stripping phenomenon is weakened by the increase in interparticle bonding quality. To improve the corrosion resistance of the CSAM deposit, the first consideration is to improve the bonding quality.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 6","pages":"1982 - 2003"},"PeriodicalIF":3.2000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01791-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

The cumulative deposition characteristic of deformed particles in the cold spray (CSAM) deposits forms unique open pore microstructure and poor bonding quality, which has great influence on the corrosion resistance. This study investigates the influence of heat treatment (HT) on the corrosion and wear behaviors of CSAM FeCoNiCrMn high entropy alloy. The results show that HT improves the bonding quality between particles, turning open micro-pores into closed, and ultimately greatly improves the corrosion resistance, which can reach the level of traditional additive manufacturing and as-cast materials. The wear resistance of the CSAM deposit after HT is improved, and the layer stripping phenomenon is weakened by the increase in interparticle bonding quality. To improve the corrosion resistance of the CSAM deposit, the first consideration is to improve the bonding quality.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化冷喷添加剂制造的铁钴镍铬锰高熵合金的耐腐蚀性:通过热处理提高粒子结合质量
冷喷(CSAM)沉积物中变形颗粒的累积沉积特征形成了独特的开孔微观结构和较差的结合质量,对耐腐蚀性有很大影响。本研究探讨了热处理(HT)对 CSAM 铁钴镍铬锰高熵合金腐蚀和磨损行为的影响。结果表明,热处理提高了颗粒间的结合质量,使开放微孔变为封闭微孔,最终大大提高了耐腐蚀性能,可达到传统增材制造和铸造材料的水平。热处理后 CSAM 沉积物的耐磨性得到改善,颗粒间结合质量的提高削弱了层剥离现象。要提高 CSAM 沉积物的耐腐蚀性,首先要考虑提高结合质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Thermal Spray Technology
Journal of Thermal Spray Technology 工程技术-材料科学:膜
CiteScore
5.20
自引率
25.80%
发文量
198
审稿时长
2.6 months
期刊介绍: From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving. A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization. The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.
期刊最新文献
Professor Pierre Léon Fauchais: “Passion and Courage” (1937–2024) Microstructural Evolution and Tribological Responses of Heat-Treated AlFeCoNiCr–Cr3C2 Coating In Situ Measurement of Track Shape in Cold Spray Deposits Design and Development of Cost-Effective Equipment for Tribological Evaluation of Thermally Sprayed Abradable Coatings Impact of Hydroxyapatite Powder Particle Size on Mechanical and Electrochemical Properties of Flame-Sprayed Coatings for Titanium Implants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1