VisionCam: A Comprehensive XAI Toolkit for Interpreting Image-Based Deep Learning Models

Walid Abdullah, Ahmed Tolba, Ahmed Elmasry, Nihal N. Mostafa
{"title":"VisionCam: A Comprehensive XAI Toolkit for Interpreting Image-Based Deep Learning Models","authors":"Walid Abdullah, Ahmed Tolba, Ahmed Elmasry, Nihal N. Mostafa","doi":"10.61356/smij.2024.8290","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI), a rapidly developing technology, has revolutionized various aspects of our lives. However many AI models' complex inner workings are still unknown, frequently compared to a \"black box.\" Particularly in crucial fields, this lack of explainability (XAI) reduces responsible AI research and reduces public confidence, and is accompanied by a growing demand for transparency and interpretability in AI decision-making. In response, this paper introduces a Python Extensible Toolkit for Explainable AI (XAI), This toolkit comprises nine state-of-the-art techniques for explaining AI models (especially deep learning models) decisions in image processing: GradCAM, GradCAM++, GradCAMElementWise, HriesCAM, RespondCAM, ScoreCAM, SmoothGradCAM++, XgradCAM, and AblationCAM. Each tool offers unique insights into model decision-making processes of deep learning models that work with image data, addressing various aspects of interpretability. Through case studies, we demonstrate the toolkit's impact on improving transparency and interpretability in AI systems that analyze visual information. The source code for the VisionCam toolkit is accessible at https://github.com/VisionCAM.","PeriodicalId":471548,"journal":{"name":"Sustainable Machine Intelligence Journal","volume":"74 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Machine Intelligence Journal","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.61356/smij.2024.8290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI), a rapidly developing technology, has revolutionized various aspects of our lives. However many AI models' complex inner workings are still unknown, frequently compared to a "black box." Particularly in crucial fields, this lack of explainability (XAI) reduces responsible AI research and reduces public confidence, and is accompanied by a growing demand for transparency and interpretability in AI decision-making. In response, this paper introduces a Python Extensible Toolkit for Explainable AI (XAI), This toolkit comprises nine state-of-the-art techniques for explaining AI models (especially deep learning models) decisions in image processing: GradCAM, GradCAM++, GradCAMElementWise, HriesCAM, RespondCAM, ScoreCAM, SmoothGradCAM++, XgradCAM, and AblationCAM. Each tool offers unique insights into model decision-making processes of deep learning models that work with image data, addressing various aspects of interpretability. Through case studies, we demonstrate the toolkit's impact on improving transparency and interpretability in AI systems that analyze visual information. The source code for the VisionCam toolkit is accessible at https://github.com/VisionCAM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VisionCam:解读基于图像的深度学习模型的综合性 XAI 工具包
人工智能(AI)作为一项快速发展的技术,已经彻底改变了我们生活的方方面面。然而,许多人工智能模型复杂的内部工作原理仍不为人知,经常被比作 "黑盒子"。特别是在关键领域,这种缺乏可解释性(XAI)的现象削弱了负责任的人工智能研究,降低了公众的信心,与此同时,人们对人工智能决策的透明度和可解释性的要求也越来越高。作为回应,本文介绍了可解释人工智能的 Python 可扩展工具包(XAI),该工具包由九种最先进的技术组成,用于解释人工智能模型(尤其是深度学习模型)在图像处理中的决策:GradCAM、GradCAM++、GradCAMElementWise、HriesCAM、RespondCAM、ScoreCAM、SmoothGradCAM++、XgradCAM 和 AblationCAM。每种工具都能为处理图像数据的深度学习模型的决策过程提供独特见解,解决可解释性的各个方面问题。通过案例研究,我们展示了该工具包对提高分析视觉信息的人工智能系统的透明度和可解释性的影响。VisionCam工具包的源代码可在https://github.com/VisionCAM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VisionCam: A Comprehensive XAI Toolkit for Interpreting Image-Based Deep Learning Models GH-Twin: Graph Learning Empowered Hierarchical Digital Twin for Optimizing Self-Healing Networks A Data-driven Deep Learning Approach for Remaining Useful Life in the ion mill etching Process Responsible Artificial Intelligence for Climate Action: A Theoretical Framework for Sustainable Development Machine Learning for Intrusion Detection: A Reproducible Baseline is All You Need
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1