Self-Assembly of Purines with Oxidants for the Development of Novel, Dense, Insensitive, and Thermally Stable Energetic Materials

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Crystal Growth & Design Pub Date : 2024-06-10 DOI:10.1021/acs.cgd.4c00046
Qamar-un-Nisa Tariq, Wen-Shuai Dong, Mou Sun, Saira Manzoor, Zu-Jia Lu, Bao-Long Kuang, Han Zhang, Chao Zhang, Qiyao Yu* and Jian-Guo Zhang*, 
{"title":"Self-Assembly of Purines with Oxidants for the Development of Novel, Dense, Insensitive, and Thermally Stable Energetic Materials","authors":"Qamar-un-Nisa Tariq,&nbsp;Wen-Shuai Dong,&nbsp;Mou Sun,&nbsp;Saira Manzoor,&nbsp;Zu-Jia Lu,&nbsp;Bao-Long Kuang,&nbsp;Han Zhang,&nbsp;Chao Zhang,&nbsp;Qiyao Yu* and Jian-Guo Zhang*,&nbsp;","doi":"10.1021/acs.cgd.4c00046","DOIUrl":null,"url":null,"abstract":"<p >Development and production of novel high-performing nitrogen-rich energetic compounds with a safe and environmentally friendly nature are significant in the pursuit of new-generation green energetic materials. Despite the growing interest in energetic cations in recent years, fused heterocyclic energetic cations have rarely been reported. In the following study, a series of energetic materials comprising purine compounds and oxidants were prepared using a significant noncovalent self-assembly method. Elemental analysis, mass spectrometry (MS), IR spectroscopy, and differential scanning calorimetry (DSC) were used to characterize these synthesized compounds thoroughly. The structures of supramolecules (<b>1–4</b>) were further verified by employing the single-crystal X-ray diffraction technique, and standard BAM methods were used to determine the sensitivities. Furthermore, theoretical calculations and experimental data were used to elucidate the relationship between the structure and properties. Comprising several benefits such as simple and facile preparation, high yield, high density, superior thermostability, insensitive nature, and good detonation properties, the synthesized compounds are regarded as competitive green energetic materials.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c00046","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Development and production of novel high-performing nitrogen-rich energetic compounds with a safe and environmentally friendly nature are significant in the pursuit of new-generation green energetic materials. Despite the growing interest in energetic cations in recent years, fused heterocyclic energetic cations have rarely been reported. In the following study, a series of energetic materials comprising purine compounds and oxidants were prepared using a significant noncovalent self-assembly method. Elemental analysis, mass spectrometry (MS), IR spectroscopy, and differential scanning calorimetry (DSC) were used to characterize these synthesized compounds thoroughly. The structures of supramolecules (1–4) were further verified by employing the single-crystal X-ray diffraction technique, and standard BAM methods were used to determine the sensitivities. Furthermore, theoretical calculations and experimental data were used to elucidate the relationship between the structure and properties. Comprising several benefits such as simple and facile preparation, high yield, high density, superior thermostability, insensitive nature, and good detonation properties, the synthesized compounds are regarded as competitive green energetic materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嘌呤与氧化剂的自组装用于开发新型、致密、不敏感和热稳定的高能材料
开发和生产安全环保的新型高性能富氮高能化合物,对于开发新一代绿色高能材料具有重要意义。尽管近年来人们对高能阳离子的兴趣与日俱增,但融合杂环高能阳离子却鲜有报道。在接下来的研究中,我们采用一种重要的非共价自组装方法制备了一系列由嘌呤化合物和氧化剂组成的高能材料。研究人员利用元素分析、质谱分析、红外光谱分析和差示扫描量热法(DSC)对这些合成化合物进行了全面的表征。利用单晶 X 射线衍射技术进一步验证了超分子(1-4)的结构,并使用标准 BAM 方法确定了其灵敏度。此外,还利用理论计算和实验数据阐明了结构与性质之间的关系。合成的化合物具有制备简单易行、产率高、密度大、热稳定性好、不敏感、起爆性能好等优点,被认为是具有竞争力的绿色能源材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Log-Normal Glide and the Formation of Misfit Dislocation Networks in Heteroepitaxial ZnS on GaP Biomimetic In Situ Self-Assembly of Metal Nanoparticles into Hierarchical 3D Mesostructures: Synthesis, Analysis, and Prospects Structural Stability of Vicinal AlN(0001) and GaN(0001) Surfaces with Steps and Kinks under Metal–Organic Vapor-Phase Epitaxy Condition: A First-Principles Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1