Akira Yoshikawa, T. Nagatomi, K. Nagase, Sho Sugiyama, L. Schowalter
{"title":"Pseudomorphic growth of a thin-GaN layer on the AlN single-crystal substrate using metal organic vapor phase epitaxy","authors":"Akira Yoshikawa, T. Nagatomi, K. Nagase, Sho Sugiyama, L. Schowalter","doi":"10.35848/1347-4065/ad565a","DOIUrl":null,"url":null,"abstract":"\n In this study, a 21 nm-thick GaN layer with a single-step terrace surface was pseudomorphically grown on an AlN single-crystal substrate using metal organic vapor phase epitaxy by increasing the growth rate up to 1 μm/h at a growth temperature of 850℃ and a reactor pressure of 5 kPa. The growth temperature and rate were found to be the factors dominating the flatness and coverage of the thin-GaN layer, revealing that controlling the degree of Ga migration is crucial. Furthermore, threading dislocations was not observed for the thin-GaN layer, with a flat surface, grown on the AlN substrate.","PeriodicalId":505044,"journal":{"name":"Japanese Journal of Applied Physics","volume":"107 38","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad565a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a 21 nm-thick GaN layer with a single-step terrace surface was pseudomorphically grown on an AlN single-crystal substrate using metal organic vapor phase epitaxy by increasing the growth rate up to 1 μm/h at a growth temperature of 850℃ and a reactor pressure of 5 kPa. The growth temperature and rate were found to be the factors dominating the flatness and coverage of the thin-GaN layer, revealing that controlling the degree of Ga migration is crucial. Furthermore, threading dislocations was not observed for the thin-GaN layer, with a flat surface, grown on the AlN substrate.