Injection Micropile Bar Fatigue Resistance at Loads Lower and Greater than the Yield Strength of Steel

IF 1.2 4区 工程技术 Q3 MINING & MINERAL PROCESSING Archives of Mining Sciences Pub Date : 2024-06-10 DOI:10.24425/ams.2024.150339
A. Pytlik, W. Frąc
{"title":"Injection Micropile Bar Fatigue Resistance at Loads Lower and Greater than the Yield Strength of Steel","authors":"A. Pytlik, W. Frąc","doi":"10.24425/ams.2024.150339","DOIUrl":null,"url":null,"abstract":"One of the techniques commonly applied today for deep foundation construction is based on self-drilling injection micropiles. Micropiles are structural elements intended primarily for reinforcing foundations and buildings, particularly under difficult terrain conditions. The goal of the tests presented herein is to inspect the fatigue resistance, strength and ductility of injection micropiles formed from 28Mn6 steel at loads significantly exceeding the values defined for the fatigue test in the requirements of the relevant European Assessment Document (EAD). The test results and the micropile bar strain model εM presented in this paper are primarily of interest to designers for the purposes of determining the fatigue resistance of steel micropiles, which find particular application in land degraded by mining activity that is characterised by frequent terrain vibration and mining-induced tremors. None of the R25N injection micropile bars failed during the fatigue resistance testing at 2·106 cycles at a load Fu = 0.7·FRe0.2 (under the yield strength of the 28Mn6 steel) as well as at Fu = 1.0·FRe0.2 and Fu = 1.2·FRe0.2, where the bars operated at the limit of and significantly above the load FRe0.2 which results in stress at the yield point of the 28Mn6 steel. Furthermore, the bar tests conducted at static and cyclic loading demonstrated the high strength and good ductility of the 28Mn6 steel.","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/ams.2024.150339","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

Abstract

One of the techniques commonly applied today for deep foundation construction is based on self-drilling injection micropiles. Micropiles are structural elements intended primarily for reinforcing foundations and buildings, particularly under difficult terrain conditions. The goal of the tests presented herein is to inspect the fatigue resistance, strength and ductility of injection micropiles formed from 28Mn6 steel at loads significantly exceeding the values defined for the fatigue test in the requirements of the relevant European Assessment Document (EAD). The test results and the micropile bar strain model εM presented in this paper are primarily of interest to designers for the purposes of determining the fatigue resistance of steel micropiles, which find particular application in land degraded by mining activity that is characterised by frequent terrain vibration and mining-induced tremors. None of the R25N injection micropile bars failed during the fatigue resistance testing at 2·106 cycles at a load Fu = 0.7·FRe0.2 (under the yield strength of the 28Mn6 steel) as well as at Fu = 1.0·FRe0.2 and Fu = 1.2·FRe0.2, where the bars operated at the limit of and significantly above the load FRe0.2 which results in stress at the yield point of the 28Mn6 steel. Furthermore, the bar tests conducted at static and cyclic loading demonstrated the high strength and good ductility of the 28Mn6 steel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在载荷低于和高于钢材屈服强度时的注塑微桩棒抗疲劳性能
自钻孔灌注微桩是目前常用的深基坑施工技术之一。微桩是一种结构元件,主要用于加固地基和建筑物,尤其是在复杂的地形条件下。本文介绍的测试目的是检验 28Mn6 钢制成的喷射微桩在载荷大大超过相关欧洲评估文件(EAD)规定的疲劳测试值时的抗疲劳性、强度和延展性。本文介绍的试验结果和微桩杆应变模型 εM 主要供设计人员参考,用于确定钢微桩的抗疲劳性,这些微桩特别适用于因采矿活动而退化的土地,其特点是地形振动和采矿引起的震颤频繁。在 Fu = 0.7-FRe0.2(低于 28Mn6 钢的屈服强度)、Fu = 1.0-FRe0.2 和 Fu = 1.2-FRe0.2 载荷下进行 2-106 个循环的抗疲劳测试期间,没有一根 R25N 喷射微桩钢筋失效。此外,在静态和循环载荷下进行的棒材测试表明,28Mn6 钢具有高强度和良好的延展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Mining Sciences
Archives of Mining Sciences 工程技术-矿业与矿物加工
CiteScore
2.40
自引率
16.70%
发文量
0
审稿时长
20 months
期刊介绍: Archives of Mining Sciences (AMS) is concerned with original research, new developments and case studies in mining sciences and energy, civil engineering and environmental engineering. The journal provides an international forum for the publication of high quality research results in: mining technologies, mineral processing, stability of mine workings, mining machine science, ventilation systems, rock mechanics, termodynamics, underground storage of oil and gas, mining and engineering geology, geotechnical engineering, tunnelling, design and construction of tunnels, design and construction on mining areas, mining geodesy, environmental protection in mining, revitalisation of postindustrial areas. Papers are welcomed on all relevant topics and especially on theoretical developments, analytical methods, numerical methods, rock testing, site investigation, and case studies.
期刊最新文献
The Influence of Geotechnical, Geological and Mining Factors on the Formation of Sinkholes at Lubambe Mine, Zambia The Influence of Rope Guide Sleeve Clearance on the Lateral Oscillation of Rope Guided Conveyance in Mine Hoist System caused by the Aerodynamic Force Injection Micropile Bar Fatigue Resistance at Loads Lower and Greater than the Yield Strength of Steel Strength and Crack Propagation Analysis of Layered Backfill Based on Energy Theory Analysis of Factors Influencing Carbon Footprint Reduction in Construction Projects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1