Active suspension control using novel HB3C optimized LQR controller for vibration suppression and ride comfort enhancement

S. F. Haseen, P. Lakshmi
{"title":"Active suspension control using novel HB3C optimized LQR controller for vibration suppression and ride comfort enhancement","authors":"S. F. Haseen, P. Lakshmi","doi":"10.1177/10775463241257748","DOIUrl":null,"url":null,"abstract":"This article addresses the optimization of a Vehicle Active Suspension System (VASS) through the application of a Linear Quadratic Regulator (LQR) controller. The primary objective is to enhance ride comfort and ensure vehicle stability by addressing the divergent needs of vibration control. The research identifies key issues in existing optimization algorithms, namely, the exploration stage inefficiency in Big Bang Big Crunch Optimization (B3C) and the slow convergence rate in Coyote Optimization (CO). To overcome these challenges, a novel hybrid algorithm, Hybrid Coyote optimization based Big Bang Big Crunch (HB3C), is proposed. The research objective is to optimize the LQR weighting matrices using the HB3C algorithm, aiming for improved ride comfort and vehicle safety. The problem statement involves the inadequacies of existing algorithms in addressing the exploration and convergence issues. The motivation lies in enhancing the efficiency of VASS through optimal control, leading to better ride comfort and safety. The methodology involves integrating CO within a loop with B3C to compute the optimum reduction rate for the algorithm. Since, B3C algorithm’s success is highly dependent on selecting the ideal reduction rate. This hybrid approach is then applied to optimize the existing LQR weighting matrices. The results are evaluated in terms of time domain and frequency domain response analysis, with a focus on ride comfort based on ISO 2631-1 standards. The study demonstrates a maximum reduction of approximately 74% achieved by the optimized HB3C-LQR controllers.","PeriodicalId":508293,"journal":{"name":"Journal of Vibration and Control","volume":"4 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10775463241257748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article addresses the optimization of a Vehicle Active Suspension System (VASS) through the application of a Linear Quadratic Regulator (LQR) controller. The primary objective is to enhance ride comfort and ensure vehicle stability by addressing the divergent needs of vibration control. The research identifies key issues in existing optimization algorithms, namely, the exploration stage inefficiency in Big Bang Big Crunch Optimization (B3C) and the slow convergence rate in Coyote Optimization (CO). To overcome these challenges, a novel hybrid algorithm, Hybrid Coyote optimization based Big Bang Big Crunch (HB3C), is proposed. The research objective is to optimize the LQR weighting matrices using the HB3C algorithm, aiming for improved ride comfort and vehicle safety. The problem statement involves the inadequacies of existing algorithms in addressing the exploration and convergence issues. The motivation lies in enhancing the efficiency of VASS through optimal control, leading to better ride comfort and safety. The methodology involves integrating CO within a loop with B3C to compute the optimum reduction rate for the algorithm. Since, B3C algorithm’s success is highly dependent on selecting the ideal reduction rate. This hybrid approach is then applied to optimize the existing LQR weighting matrices. The results are evaluated in terms of time domain and frequency domain response analysis, with a focus on ride comfort based on ISO 2631-1 standards. The study demonstrates a maximum reduction of approximately 74% achieved by the optimized HB3C-LQR controllers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用新型 HB3C 优化 LQR 控制器进行主动悬架控制,以抑制振动并提高乘坐舒适性
本文探讨了通过应用线性二次调节器(LQR)控制器对车辆主动悬架系统(VASS)进行优化的问题。其主要目的是通过解决振动控制的不同需求,提高驾乘舒适性并确保车辆稳定性。研究发现了现有优化算法中的关键问题,即大爆炸大紧缩优化(B3C)中探索阶段的低效率和土狼优化(CO)中收敛速度慢的问题。为了克服这些挑战,我们提出了一种新型混合算法,即基于大爆炸大紧缩优化(B3C)的混合土狼优化(HB3C)。研究目标是使用 HB3C 算法优化 LQR 权重矩阵,以提高驾乘舒适性和车辆安全性。问题陈述涉及现有算法在解决探索和收敛问题方面的不足。其动机在于通过优化控制提高 VASS 的效率,从而获得更好的驾乘舒适性和安全性。该方法涉及将 CO 与 B3C 集成在一个环路中,以计算该算法的最佳减少率。由于 B3C 算法的成功与否在很大程度上取决于理想减速率的选择。然后将这种混合方法用于优化现有的 LQR 权重矩阵。研究结果通过时域和频域响应分析进行评估,重点是基于 ISO 2631-1 标准的乘坐舒适性。研究表明,优化后的 HB3C-LQR 控制器最大可降低约 74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Resonance frequency tracking control of a three-degree-of-freedom acoustic resonance system Dynamic modeling of configuration-controllable phononic crystal using NARX neural networks Laminated permanent magnet array eddy current damper for large-scale precision micro-vibration isolation Direct solutions for robust vibration suppression through motion design Semi-active yaw dampers in locomotive running gear: New control algorithms and verification of their stabilising effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1