Piezoelectric stimulation enhances bone regeneration in alveolar bone defects through metabolic reprogramming of macrophages

Exploration Pub Date : 2024-06-10 DOI:10.1002/exp.20230149
Baiyan Sui, Tingting Ding, Xingyi Wan, Yuxiao Chen, Xiaodi Zhang, Yuanbo Cui, Jie Pan, Linlin Li, Xin Liu
{"title":"Piezoelectric stimulation enhances bone regeneration in alveolar bone defects through metabolic reprogramming of macrophages","authors":"Baiyan Sui, Tingting Ding, Xingyi Wan, Yuxiao Chen, Xiaodi Zhang, Yuanbo Cui, Jie Pan, Linlin Li, Xin Liu","doi":"10.1002/exp.20230149","DOIUrl":null,"url":null,"abstract":"Immunomodulation has emerged as a promising strategy for promoting bone regeneration. However, designing osteoimmunomodulatory biomaterial that can respond to mechanical stress in the unique microenvironment of alveolar bone under continuous occlusal stress remains a significant challenge. Herein, a wireless piezoelectric stimulation system, namely, piezoelectric hydrogel incorporating BaTiO3 nanoparticles (BTO NPs), is successfully developed to generate piezoelectric potentials for modulating macrophage reprogramming. The piezoelectric stimulation reprograms macrophages towards the M2 phenotype, which subsequently induces osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). RNA sequencing analysis reveals that piezoelectricity‐modulated macrophage M2 polarization is closely associated with metabolic reprogramming, including increased amino acid biosynthesis and fatty acid oxidation. The composite hydrogel with excellent biocompatibility exhibits immunomodulatory and osteoinductive activities. In a rat model of alveolar bone defects, the piezoelectric hydrogel effectively promotes endogenous bone regeneration at the load‐bearing sites. The piezoelectric‐driven osteoimmunomodulation proposed in this study not only broadens understanding of the mechanism underlying piezoelectric biomaterials for tissue regeneration but also provides new insights into the design and development of next‐generation immunomodulatory biomaterials.","PeriodicalId":503118,"journal":{"name":"Exploration","volume":" 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/exp.20230149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Immunomodulation has emerged as a promising strategy for promoting bone regeneration. However, designing osteoimmunomodulatory biomaterial that can respond to mechanical stress in the unique microenvironment of alveolar bone under continuous occlusal stress remains a significant challenge. Herein, a wireless piezoelectric stimulation system, namely, piezoelectric hydrogel incorporating BaTiO3 nanoparticles (BTO NPs), is successfully developed to generate piezoelectric potentials for modulating macrophage reprogramming. The piezoelectric stimulation reprograms macrophages towards the M2 phenotype, which subsequently induces osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). RNA sequencing analysis reveals that piezoelectricity‐modulated macrophage M2 polarization is closely associated with metabolic reprogramming, including increased amino acid biosynthesis and fatty acid oxidation. The composite hydrogel with excellent biocompatibility exhibits immunomodulatory and osteoinductive activities. In a rat model of alveolar bone defects, the piezoelectric hydrogel effectively promotes endogenous bone regeneration at the load‐bearing sites. The piezoelectric‐driven osteoimmunomodulation proposed in this study not only broadens understanding of the mechanism underlying piezoelectric biomaterials for tissue regeneration but also provides new insights into the design and development of next‐generation immunomodulatory biomaterials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
压电刺激通过对巨噬细胞进行代谢重编程,促进牙槽骨缺损的骨再生
免疫调节已成为促进骨再生的一种有前途的策略。然而,在牙槽骨独特的微环境中,在持续的咬合应力作用下,设计能够对机械应力做出反应的骨免疫调节生物材料仍然是一项重大挑战。本文成功开发了一种无线压电刺激系统,即含有 BaTiO3 纳米颗粒(BTO NPs)的压电水凝胶,以产生压电电位来调节巨噬细胞的重编程。压电刺激可将巨噬细胞重编程为 M2 表型,进而诱导骨髓间充质干细胞(BMSCs)的成骨分化。RNA 测序分析表明,压电调节巨噬细胞 M2 极化与代谢重编程密切相关,包括氨基酸生物合成和脂肪酸氧化的增加。这种具有良好生物相容性的复合水凝胶具有免疫调节和骨诱导活性。在大鼠牙槽骨缺损模型中,压电水凝胶能有效促进承重部位的内源性骨再生。本研究提出的压电驱动骨免疫调节不仅拓宽了人们对压电生物材料促进组织再生机理的认识,也为下一代免疫调节生物材料的设计和开发提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Direct synthesis of high quantum yield lead‐free CsCu2I3 powder in water and its application in yellow LED Antigen/adjuvant‐free liposome induces adjuvant effects for enhancing cancer immunotherapy Drug delivery pathways to the central nervous system via the brain glymphatic system circumventing the blood‐brain barrier Well‐defined nanostructures of high entropy alloys for electrocatalysis Advanced electrocatalysts for fuel cells: Evolution of active sites and synergistic properties of catalysts and carrier materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1