Design and experimental verification of hybrid excitation magnetic field modulation machine for electric vehicle propulsion

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Applied Electromagnetics and Mechanics Pub Date : 2024-06-10 DOI:10.3233/jae-220288
Yang Zhang, Wanqi Kong, Jiming Luo, Yanlong Mu, Ting Li, Duane Decker
{"title":"Design and experimental verification of hybrid excitation magnetic field modulation machine for electric vehicle propulsion","authors":"Yang Zhang, Wanqi Kong, Jiming Luo, Yanlong Mu, Ting Li, Duane Decker","doi":"10.3233/jae-220288","DOIUrl":null,"url":null,"abstract":"As one sort of flux modulation machine based on magnetic gear effect, field-modulated machine features with low speed large torque. A novel hybrid excitation field-modulated machine (HEFMM) is proposed by introducing the concept of hybrid excitation, the flux modulation poles (FMPs) and excitation winding of which are emplaced in stator teeth and the adjacent FMPs. It can be maintained wide speed range operation through the processes of flux-enhancing and flux-weakening with no increasing machine bulk, as well as the numbers of stator and rotor slot. The working principle of proposed machine is deeply studied, as well as basic electromagnetic characteristics are calculated by finite element method, including no-load magnetic flux linkage, no-load back electromotive force, cogging torque and output torque. In addition, the processes of flux-enhancing and flux-weakening are analyzed. Finally, one prototype with one kilowatt was built and its static characteristics were tested. The results show that the proposed HEFMM has the features of high torque density, small cogging torque and wide speed range, which is promising candidate for electric vehicle direct drive field.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-220288","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As one sort of flux modulation machine based on magnetic gear effect, field-modulated machine features with low speed large torque. A novel hybrid excitation field-modulated machine (HEFMM) is proposed by introducing the concept of hybrid excitation, the flux modulation poles (FMPs) and excitation winding of which are emplaced in stator teeth and the adjacent FMPs. It can be maintained wide speed range operation through the processes of flux-enhancing and flux-weakening with no increasing machine bulk, as well as the numbers of stator and rotor slot. The working principle of proposed machine is deeply studied, as well as basic electromagnetic characteristics are calculated by finite element method, including no-load magnetic flux linkage, no-load back electromotive force, cogging torque and output torque. In addition, the processes of flux-enhancing and flux-weakening are analyzed. Finally, one prototype with one kilowatt was built and its static characteristics were tested. The results show that the proposed HEFMM has the features of high torque density, small cogging torque and wide speed range, which is promising candidate for electric vehicle direct drive field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电动汽车推进用混合励磁磁场调制器的设计与实验验证
作为一种基于磁齿轮效应的磁通调制机,场调制机具有低速大扭矩的特点。通过引入混合励磁的概念,提出了一种新型混合励磁场调制机(HEFMM),其磁通调制极(FMP)和励磁绕组被安置在定子齿和相邻的 FMP 上。通过磁通增强和磁通减弱过程,它可以在不增加机器体积以及定子和转子槽数的情况下保持宽转速范围运行。本文深入研究了所提机器的工作原理,并采用有限元法计算了基本电磁特性,包括空载磁通联结、空载反向电动势、齿槽转矩和输出转矩。此外,还分析了磁通增强和磁通减弱的过程。最后,制造了一台一千瓦的原型机,并对其静态特性进行了测试。结果表明,所提出的 HEFMM 具有转矩密度高、齿槽转矩小和速度范围宽的特点,有望应用于电动汽车直接驱动领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
4.6 months
期刊介绍: The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are: Physics and mechanics of electromagnetic materials and devices Computational electromagnetics in materials and devices Applications of electromagnetic fields and materials The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics. The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.
期刊最新文献
Optimization design of the modified SST based on adaptive genetic algorithm Influence of key design parameters on the critical speed of eddy current brake Numerical simulation of contact surface stress distribution based on stress-magnetization effect surface Optimization design and measurement of septum magnet with low leakage field Multi-objective optimization of permanent magnet motor based on Improved Salp Swarm Algorithm and Spearman correlation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1