{"title":"Coarse-Grained Molecular Dynamics Simulations of Nanoscale Roughness Effects on Oil Film Delamination","authors":"Shizhe Deng, Atsushi Kubo, Yoshikazu Todaka, Yoshinori Shiihara, Masatoshi Mitsuhara, Yoshitaka Umeno","doi":"10.1007/s11249-024-01872-2","DOIUrl":null,"url":null,"abstract":"<div><p>In boundary lubrication, the detachment of lubricant molecules from a solid surface is likely to occur due to the presence of high compressive normal stress combined with shear stress exerted on the solid–liquid interface. This phenomenon often results in a delamination behavior at the interface. We aim to investigate the nanoscale roughness effect on the oil film delamination from sliding iron surfaces with grain boundaries by coarse-grained molecular dynamics simulations. As a result, the oil film delamination was effectively suppressed in higher roughness. Two distinct mechanisms of delamination were found depending on surface roughness when the critical normal stress is exceeded. High roughness enhanced the ability to prevent complete slip but had negligible influence on partial slip.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01872-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01872-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In boundary lubrication, the detachment of lubricant molecules from a solid surface is likely to occur due to the presence of high compressive normal stress combined with shear stress exerted on the solid–liquid interface. This phenomenon often results in a delamination behavior at the interface. We aim to investigate the nanoscale roughness effect on the oil film delamination from sliding iron surfaces with grain boundaries by coarse-grained molecular dynamics simulations. As a result, the oil film delamination was effectively suppressed in higher roughness. Two distinct mechanisms of delamination were found depending on surface roughness when the critical normal stress is exceeded. High roughness enhanced the ability to prevent complete slip but had negligible influence on partial slip.
期刊介绍:
Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.