Najib Abekiri, Mohammed Ajaamoum, Azzedine Rachdy, Boujemaa Nassiri, Mohamed Benydir
{"title":"Towards hybrid technical learning: Transforming traditional Laboratories for distance learning","authors":"Najib Abekiri, Mohammed Ajaamoum, Azzedine Rachdy, Boujemaa Nassiri, Mohamed Benydir","doi":"10.1002/cae.22771","DOIUrl":null,"url":null,"abstract":"<p>The rise in the number of students pursuing scientific and technical fields, along with the constraints of physical infrastructure and the difficulties posed by the COVID-19 pandemic, has led to a reassessment of conventional laboratory learning. The shift towards virtual or remote laboratories is not only a response to these challenges but also a chance to enhance educational methodologies in science and engineering. This study aims to develop and evaluate a method for transforming traditional laboratories into distance laboratories for science and engineering education. The focus is on optimizing existing laboratory equipment and integrating low-cost IoT solutions to facilitate distance experiments while adopting a hybrid learning approach. This approach seamlessly integrates theory, simulations, remote experiments, and reflective activities. The study analyzed a diverse group of students from the electrical engineering discipline, evaluating their engagement, motivation, and learning outcomes. The preliminary results suggest an increase in student motivation and engagement, demonstrating improved analytical capacity and a more comprehensive understanding of experimental concepts. The implementation of IoT solutions in traditional laboratories can transform them into hybrid learning environments. This integration of practical and digital methods can address challenges and improve learning experiences. It emphasizes the importance of evolving teaching practices to engage and motivate students in the digital era.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cae.22771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The rise in the number of students pursuing scientific and technical fields, along with the constraints of physical infrastructure and the difficulties posed by the COVID-19 pandemic, has led to a reassessment of conventional laboratory learning. The shift towards virtual or remote laboratories is not only a response to these challenges but also a chance to enhance educational methodologies in science and engineering. This study aims to develop and evaluate a method for transforming traditional laboratories into distance laboratories for science and engineering education. The focus is on optimizing existing laboratory equipment and integrating low-cost IoT solutions to facilitate distance experiments while adopting a hybrid learning approach. This approach seamlessly integrates theory, simulations, remote experiments, and reflective activities. The study analyzed a diverse group of students from the electrical engineering discipline, evaluating their engagement, motivation, and learning outcomes. The preliminary results suggest an increase in student motivation and engagement, demonstrating improved analytical capacity and a more comprehensive understanding of experimental concepts. The implementation of IoT solutions in traditional laboratories can transform them into hybrid learning environments. This integration of practical and digital methods can address challenges and improve learning experiences. It emphasizes the importance of evolving teaching practices to engage and motivate students in the digital era.