Cryogenic DRIE Processes for High-Precision Silicon Etching in MEMS Applications

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-06-07 DOI:10.1088/1361-6439/ad5563
Benjamin Horstmann, David Pate, Bennett Smith, M. Mamun, Gary Atkinson, Umit Ozgur, V. Avrutin
{"title":"Cryogenic DRIE Processes for High-Precision Silicon Etching in MEMS Applications","authors":"Benjamin Horstmann, David Pate, Bennett Smith, M. Mamun, Gary Atkinson, Umit Ozgur, V. Avrutin","doi":"10.1088/1361-6439/ad5563","DOIUrl":null,"url":null,"abstract":"\n Cryogenic deep reactive ion etching (Cryo DRIE) of silicon has become an enticing but challenging process utilized in front-end fabrication for the semiconductor industry. This method, compared to the Bosch process, yields vertical etch profiles with smoother sidewalls not subjected to scalloping, which are desired for many microelectromechanical systems (MEMS) applications. Smoother sidewalls enhance electrical contact by ensuring more conformal and uniform sidewall coverage, thereby increasing the effective contact area without altering contact dimensions. The versatility of the Cryo DRIE process allows for customization of the etch profiles by adjusting key process parameters such as table temperature, O2 percentage of the total gas flow rate (O2 + SF6), RF bias power, and process pressure. In this work, we undertake a comprehensive study of the effects of Cryo DRIE process parameters on the trench profiles in the structures used to define cantilevers in MEMS devices. Experiments were performed with an Oxford PlasmaPro 100 Estrelas ICP-RIE system using positive photoresist SPR-955 as a mask material. Our findings demonstrate significant influences on the sidewall angle, etch rate, and trench shape due to these parameter modifications. Varying the table temperature between -80°C and -120°C under a constant process pressure of 10 mTorr changes the etch rate from 3 to 4 µm/min, while sidewall angle changes by ~2°, from positive (<90° relative to the Si surface) to negative (>90° relative to the Si surface) tapering. Altering the O2 flow rate with constant SF6 flow results in a notable 10° shift in sidewall tapering. Furthermore, SPR-955 photoresist masks provide selectivity of 46:1 with respect to Si and facilitates the fabrication of MEMS devices with precise dimension control ranging from 1 to 100 µm for etching depths up to 42 µm using Cryo DRIE. Understanding the influence of each parameter is crucial for optimizing MEMS device fabrication.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" 39","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad5563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Cryogenic deep reactive ion etching (Cryo DRIE) of silicon has become an enticing but challenging process utilized in front-end fabrication for the semiconductor industry. This method, compared to the Bosch process, yields vertical etch profiles with smoother sidewalls not subjected to scalloping, which are desired for many microelectromechanical systems (MEMS) applications. Smoother sidewalls enhance electrical contact by ensuring more conformal and uniform sidewall coverage, thereby increasing the effective contact area without altering contact dimensions. The versatility of the Cryo DRIE process allows for customization of the etch profiles by adjusting key process parameters such as table temperature, O2 percentage of the total gas flow rate (O2 + SF6), RF bias power, and process pressure. In this work, we undertake a comprehensive study of the effects of Cryo DRIE process parameters on the trench profiles in the structures used to define cantilevers in MEMS devices. Experiments were performed with an Oxford PlasmaPro 100 Estrelas ICP-RIE system using positive photoresist SPR-955 as a mask material. Our findings demonstrate significant influences on the sidewall angle, etch rate, and trench shape due to these parameter modifications. Varying the table temperature between -80°C and -120°C under a constant process pressure of 10 mTorr changes the etch rate from 3 to 4 µm/min, while sidewall angle changes by ~2°, from positive (<90° relative to the Si surface) to negative (>90° relative to the Si surface) tapering. Altering the O2 flow rate with constant SF6 flow results in a notable 10° shift in sidewall tapering. Furthermore, SPR-955 photoresist masks provide selectivity of 46:1 with respect to Si and facilitates the fabrication of MEMS devices with precise dimension control ranging from 1 to 100 µm for etching depths up to 42 µm using Cryo DRIE. Understanding the influence of each parameter is crucial for optimizing MEMS device fabrication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于微机电系统应用中高精度硅蚀刻的低温 DRIE 工艺
硅的低温深反应离子蚀刻(Cryo DRIE)已成为半导体行业前端制造中一种诱人但极具挑战性的工艺。与博世工艺相比,这种方法能产生垂直蚀刻剖面,侧壁更光滑,不会产生扇形,而这正是许多微机电系统 (MEMS) 应用所需要的。更平滑的侧壁可确保更一致、更均匀的侧壁覆盖,从而在不改变接触尺寸的情况下增加有效接触面积,从而增强电接触。Cryo DRIE 工艺的多功能性允许通过调整关键工艺参数(如工作台温度、O2 在总气体流量中的百分比(O2 + SF6)、射频偏置功率和工艺压力)来定制蚀刻轮廓。在这项工作中,我们全面研究了低温 DRIE 工艺参数对 MEMS 器件悬臂结构中沟槽轮廓的影响。实验采用牛津 PlasmaPro 100 Estrelas ICP-RIE 系统,使用正性光刻胶 SPR-955 作为掩膜材料。我们的研究结果表明,这些参数的修改对侧壁角度、蚀刻速率和沟槽形状有重大影响。在 10 mTorr 的恒定工艺压力下,在 -80°C 和 -120°C 之间改变工作台温度,可将蚀刻速率从 3 微米/分钟提高到 4 微米/分钟,而侧壁角度则从正(相对于硅表面成 90°)渐变为约 2°。在保持 SF6 流量不变的情况下,改变 O2 流速会导致侧壁锥度明显改变 10°。此外,SPR-955 光刻胶掩模对硅的选择性为 46:1,有助于使用 Cryo DRIE 制作 MEMS 器件,蚀刻深度可达 42 µm,尺寸控制精确度为 1 到 100 µm。了解每个参数的影响对于优化 MEMS 器件制造至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Microcomputed Tomography for the Microstructure Evaluation of 3D Bioprinted Scaffolds. Bacteria Colonies Modify Their Shear and Compressive Mechanical Properties in Response to Different Growth Substrates. Recent Advances and Developments in Injectable Conductive Polymer Gels for Bioelectronics. Chitosan Poly(vinyl alcohol) Methacrylate Hydrogels for Tissue Engineering Scaffolds. Bacterial Patterning: A Promising Biofabrication Technique.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1