Structural, Ionic, and Electronic Properties of Solid-State Phthalimide-Containing Polymers for All-Organic Batteries

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY JACS Au Pub Date : 2024-06-07 DOI:10.1021/jacsau.4c00276
Riccardo Alessandri, Cheng-Han Li, Sheila Keating, Khirabdhi T. Mohanty, Aaron Peng, Jodie L. Lutkenhaus, Stuart J. Rowan, Daniel P. Tabor* and Juan J. de Pablo*, 
{"title":"Structural, Ionic, and Electronic Properties of Solid-State Phthalimide-Containing Polymers for All-Organic Batteries","authors":"Riccardo Alessandri,&nbsp;Cheng-Han Li,&nbsp;Sheila Keating,&nbsp;Khirabdhi T. Mohanty,&nbsp;Aaron Peng,&nbsp;Jodie L. Lutkenhaus,&nbsp;Stuart J. Rowan,&nbsp;Daniel P. Tabor* and Juan J. de Pablo*,&nbsp;","doi":"10.1021/jacsau.4c00276","DOIUrl":null,"url":null,"abstract":"<p >Redox-active polymers serving as the active materials in solid-state electrodes offer a promising path toward realizing all-organic batteries. While both cathodic and anodic redox-active polymers are needed, the diversity of the available anodic materials is limited. Here, we predict solid-state structural, ionic, and electronic properties of anodic, phthalimide-containing polymers using a multiscale approach that combines atomistic molecular dynamics, electronic structure calculations, and machine learning surrogate models. Importantly, by combining information from each of these scales, we are able to bridge the gap between bottom-up molecular characteristics and macroscopic properties such as apparent diffusion coefficients of electron transport (<i>D</i><sub>app</sub>). We investigate the impact of different polymer backbones and of two critical factors during battery operation: state of charge and polymer swelling. Our findings reveal that the state of charge significantly influences solid-state packing and the thermophysical properties of the polymers, which, in turn, affect ionic and electronic transport. A combination of molecular-level properties (such as the reorganization energy) and condensed-phase properties (such as effective electron hopping distances) determine the predicted ranking of electron transport capabilities of the polymers. We predict <i>D</i><sub>app</sub> for the phthalimide-based polymers and for a reference nitroxide radical-based polymer, finding a 3 orders of magnitude increase in <i>D</i><sub>app</sub> (≈10<sup>–6</sup> cm<sup>2</sup> s<sup>–1</sup>) with respect to the reference. This study underscores the promise of phthalimide-containing polymers as highly capable redox-active polymers for anodic materials in all-organic batteries, due to their exceptional predicted electron transport capabilities.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00276","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Redox-active polymers serving as the active materials in solid-state electrodes offer a promising path toward realizing all-organic batteries. While both cathodic and anodic redox-active polymers are needed, the diversity of the available anodic materials is limited. Here, we predict solid-state structural, ionic, and electronic properties of anodic, phthalimide-containing polymers using a multiscale approach that combines atomistic molecular dynamics, electronic structure calculations, and machine learning surrogate models. Importantly, by combining information from each of these scales, we are able to bridge the gap between bottom-up molecular characteristics and macroscopic properties such as apparent diffusion coefficients of electron transport (Dapp). We investigate the impact of different polymer backbones and of two critical factors during battery operation: state of charge and polymer swelling. Our findings reveal that the state of charge significantly influences solid-state packing and the thermophysical properties of the polymers, which, in turn, affect ionic and electronic transport. A combination of molecular-level properties (such as the reorganization energy) and condensed-phase properties (such as effective electron hopping distances) determine the predicted ranking of electron transport capabilities of the polymers. We predict Dapp for the phthalimide-based polymers and for a reference nitroxide radical-based polymer, finding a 3 orders of magnitude increase in Dapp (≈10–6 cm2 s–1) with respect to the reference. This study underscores the promise of phthalimide-containing polymers as highly capable redox-active polymers for anodic materials in all-organic batteries, due to their exceptional predicted electron transport capabilities.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于全有机电池的含邻苯二甲酰亚胺固态聚合物的结构、离子和电子特性
作为固态电极活性材料的氧化还原活性聚合物为实现全有机电池提供了一条前景广阔的道路。虽然需要阴极和阳极氧化还原活性聚合物,但现有阳极材料的多样性有限。在这里,我们采用一种多尺度方法,结合原子分子动力学、电子结构计算和机器学习代理模型,预测了含邻苯二甲酰亚胺的阳极聚合物的固态结构、离子和电子特性。重要的是,通过结合这些尺度的信息,我们能够弥合自下而上的分子特性与宏观特性(如电子传输的表观扩散系数(Dapp))之间的差距。我们研究了不同聚合物骨架和电池运行过程中两个关键因素的影响:充电状态和聚合物溶胀。我们的研究结果表明,电荷状态会显著影响聚合物的固态堆积和热物理性质,进而影响离子和电子传输。分子级特性(如重组能)和凝聚相特性(如有效电子跳跃距离)的结合决定了聚合物电子传输能力的预测排名。我们预测了邻苯二甲酰亚胺基聚合物和硝基自由基聚合物的 Dapp,发现与参考聚合物相比,Dapp 增加了 3 个数量级(≈10-6 cm2 s-1)。这项研究强调了含邻苯二甲酰亚胺的聚合物因其卓越的预测电子传输能力而有望成为全有机电池阳极材料的高氧化还原活性聚合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Issue Editorial Masthead Issue Publication Information Biocatalysis in Asia and the Pacific Biocatalysis in Asia and the Pacific. Optimizing the Lattice Nitrogen Coordination to Break the Performance Limitation of Metal Nitrides for Electrocatalytic Nitrogen Reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1