Effect of Speckle Edge Characteristics on DIC Calculation Error

IF 2 3区 工程技术 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Experimental Mechanics Pub Date : 2024-06-07 DOI:10.1007/s11340-024-01078-6
H. Cui, Z. Zeng, H. Zhang, F. Yang
{"title":"Effect of Speckle Edge Characteristics on DIC Calculation Error","authors":"H. Cui,&nbsp;Z. Zeng,&nbsp;H. Zhang,&nbsp;F. Yang","doi":"10.1007/s11340-024-01078-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>In DIC studies, positional parameters and speckle size are commonly used to characterise speckle images. The influence of edge parameters is ignored. This leads to a great difference between the DIC calculation results of simulated and real images. And some contradictory results are also produced.</p><h3>Objective</h3><p>The main objective of this paper is to investigate the effect of edge parameters. As well as to give more reasonable parameters to describe the speckle characteristics.</p><h3>Methods</h3><p>Firstly, this paper proposes a series of more reasonable parameters to describe the speckle features based on the mathematical expression of the speckle image. Subsequently, the effect of different edge functions on the computational error of DIC is investigated. The effect of different edge functions on pre-filtering is also investigated. Finally, real speckle images are produced using Gaussian and step functions to study the difference between the simulated and real speckle images.</p><h3>Results</h3><p>Generally, it is believed that prefiltering can reduce the computational error of DIC, but for Gaussian edges, prefiltering hardly reduces the error, whereas hybrid edges correctly exhibit this phenomenon. Although the Gaussian edge perform well in the simulation, the actual speckle images taken show that the DIC error corresponding to the camera-acquired Gaussian speckle is much larger than that of the step speckle.</p><h3>Conclusions</h3><p>The introduction of edge parameters to describe speckle images is necessary for DIC studies. Pre-filtering always reduces the DIC error, but for Gaussian edges this property cannot be demonstrated. The most suitable edges in reality are step edges, not Gaussian edges.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 7","pages":"1143 - 1160"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-024-01078-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Background

In DIC studies, positional parameters and speckle size are commonly used to characterise speckle images. The influence of edge parameters is ignored. This leads to a great difference between the DIC calculation results of simulated and real images. And some contradictory results are also produced.

Objective

The main objective of this paper is to investigate the effect of edge parameters. As well as to give more reasonable parameters to describe the speckle characteristics.

Methods

Firstly, this paper proposes a series of more reasonable parameters to describe the speckle features based on the mathematical expression of the speckle image. Subsequently, the effect of different edge functions on the computational error of DIC is investigated. The effect of different edge functions on pre-filtering is also investigated. Finally, real speckle images are produced using Gaussian and step functions to study the difference between the simulated and real speckle images.

Results

Generally, it is believed that prefiltering can reduce the computational error of DIC, but for Gaussian edges, prefiltering hardly reduces the error, whereas hybrid edges correctly exhibit this phenomenon. Although the Gaussian edge perform well in the simulation, the actual speckle images taken show that the DIC error corresponding to the camera-acquired Gaussian speckle is much larger than that of the step speckle.

Conclusions

The introduction of edge parameters to describe speckle images is necessary for DIC studies. Pre-filtering always reduces the DIC error, but for Gaussian edges this property cannot be demonstrated. The most suitable edges in reality are step edges, not Gaussian edges.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
斑点边缘特性对 DIC 计算误差的影响
背景在 DIC 研究中,位置参数和斑点大小通常用于描述斑点图像的特征。而边缘参数的影响却被忽略了。这就导致了模拟图像和真实图像的 DIC 计算结果之间存在很大差异,并产生了一些相互矛盾的结果。本文的主要目的是研究边缘参数的影响。方法首先,本文根据斑点图像的数学表达式,提出了一系列更合理的参数来描述斑点特征。随后,研究了不同边缘函数对 DIC 计算误差的影响。还研究了不同边缘函数对预滤波的影响。结果一般认为,预过滤可以减少 DIC 的计算误差,但对于高斯边缘,预过滤几乎不能减少误差,而混合边缘却能正确显示这一现象。虽然高斯边缘在模拟中表现良好,但实际拍摄的斑点图像显示,相机获取的高斯斑点对应的 DIC 误差远远大于阶跃斑点。预滤波总能减少 DIC 误差,但对于高斯边缘,这一特性却无法体现。现实中最合适的边缘是阶梯边缘,而不是高斯边缘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Mechanics
Experimental Mechanics 物理-材料科学:表征与测试
CiteScore
4.40
自引率
16.70%
发文量
111
审稿时长
3 months
期刊介绍: Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome. Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.
期刊最新文献
A Note of Gratitude from the Editor-in-Chief On the Cover: Accounting for Localized Deformation: A Simple Computation of True Stress in Micropillar Compression Experiments Dynamic Magneto-Mechanical Analysis of Isotropic and Anisotropic Magneto-Active Elastomers Measurement of the Tension Loss in a Cable Traveling Over a Pulley, for Low-Speed Applications Biomechanical Hand Model: Modeling and Simulating the Lateral Pinch Movement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1