Radially polarized femtosecond laser interaction with unmagnetized plasma slab and symmetric modes for enhanced terahertz field generation

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Contributions to Plasma Physics Pub Date : 2024-06-07 DOI:10.1002/ctpp.202400020
Himank Sagar, Suresh C. Sharma
{"title":"Radially polarized femtosecond laser interaction with unmagnetized plasma slab and symmetric modes for enhanced terahertz field generation","authors":"Himank Sagar, Suresh C. Sharma","doi":"10.1002/ctpp.202400020","DOIUrl":null,"url":null,"abstract":"We consider the excitation of terahertz (THz) electromagnetic fields by interaction of radially polarized laser pulses of diverse profiles with a homogenous plasma density slab. We utilize the properties of the laser pulse to generate THz fields in a plasma slab. It is shown that the radial ponderomotive force exerted by laser imparts an oscillatory velocity to plasma electrons and drives a nonlinear current in azimuthal direction exciting THz electromagnetic fields in the plasma slab. The dependence of the excited radial electric field and azimuthal magnetic field on axial and radial parameters of the plasmas lab, as well as on the slab thickness and laser pulse width size, is investigated. It is demonstrated that the terahertz fields are generated most efficiently with a frequency close to the plasma frequency. It is also shown that the intensity of the excited fields may be optimized and controlled by the plasma slab and laser pulse parameters. Rectangular‐triangular, super‐Gaussian, and sinusoidal lasers exhibit a significantly steeper radial gradient of ponderomotive potential in comparison with other laser profiles, and excite intense radial electric fields and generate azimuthal magnetic fields in plasma slab. The numerical results closely follow the scaling laws and match with previous experimental and simulation results.","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ctpp.202400020","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the excitation of terahertz (THz) electromagnetic fields by interaction of radially polarized laser pulses of diverse profiles with a homogenous plasma density slab. We utilize the properties of the laser pulse to generate THz fields in a plasma slab. It is shown that the radial ponderomotive force exerted by laser imparts an oscillatory velocity to plasma electrons and drives a nonlinear current in azimuthal direction exciting THz electromagnetic fields in the plasma slab. The dependence of the excited radial electric field and azimuthal magnetic field on axial and radial parameters of the plasmas lab, as well as on the slab thickness and laser pulse width size, is investigated. It is demonstrated that the terahertz fields are generated most efficiently with a frequency close to the plasma frequency. It is also shown that the intensity of the excited fields may be optimized and controlled by the plasma slab and laser pulse parameters. Rectangular‐triangular, super‐Gaussian, and sinusoidal lasers exhibit a significantly steeper radial gradient of ponderomotive potential in comparison with other laser profiles, and excite intense radial electric fields and generate azimuthal magnetic fields in plasma slab. The numerical results closely follow the scaling laws and match with previous experimental and simulation results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
径向偏振飞秒激光与未磁化等离子体板和对称模式的相互作用,用于生成增强型太赫兹场
我们考虑了不同剖面的径向偏振激光脉冲与均质等离子体密度板相互作用激发太赫兹(THz)电磁场的问题。我们利用激光脉冲的特性在等离子体板中产生太赫兹场。研究表明,激光施加的径向思索动力会给等离子体电子带来振荡速度,并在等离子体板中驱动方位角方向的非线性电流,激发太赫兹电磁场。研究了激发的径向电场和方位磁场对等离子体实验室轴向和径向参数的依赖性,以及对等离子体板厚度和激光脉冲宽度大小的依赖性。结果表明,太赫兹场在频率接近等离子体频率时产生效率最高。研究还表明,激发场的强度可以通过等离子体板和激光脉冲参数进行优化和控制。与其他激光剖面相比,矩形-三角形、超高斯和正弦激光表现出明显陡峭的深思动势径向梯度,在等离子体板中激发出强烈的径向电场并产生方位磁场。数值结果密切遵循缩放规律,并与之前的实验和模拟结果相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Contributions to Plasma Physics
Contributions to Plasma Physics 物理-物理:流体与等离子体
CiteScore
2.90
自引率
12.50%
发文量
110
审稿时长
4-8 weeks
期刊介绍: Aims and Scope of Contributions to Plasma Physics: Basic physics of low-temperature plasmas; Strongly correlated non-ideal plasmas; Dusty Plasmas; Plasma discharges - microplasmas, reactive, and atmospheric pressure plasmas; Plasma diagnostics; Plasma-surface interaction; Plasma technology; Plasma medicine.
期刊最新文献
Cover Picture: Contrib. Plasma Phys. 05/2024 Issue Information: Contrib. Plasma Phys. 05/2024 Growth mechanism of high‐voltage electric pulse rock breaking 3D plasma channel in drilling fluid environment Classical and quantum theory of fluctuations for many-particle systems out of equilibrium Resonant and nonresonant excitation of waves in a planar magnetosonic flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1