Adaptive PID controller using deep deterministic policy gradient for a 6D hyperchaotic system

Mohammad Ali Labbaf Khaniki, Amirhossein Samii, Mahsan Tavakoli‐Kakhki
{"title":"Adaptive PID controller using deep deterministic policy gradient for a 6D hyperchaotic system","authors":"Mohammad Ali Labbaf Khaniki, Amirhossein Samii, Mahsan Tavakoli‐Kakhki","doi":"10.1177/01423312241253639","DOIUrl":null,"url":null,"abstract":"This article introduces a method for the adaptive control of a six-dimensional (6D) hyperchaotic system using a multi-input multi-output (MIMO) approach, leveraging the deep deterministic policy gradient (DDPG) algorithm. The states and tracking errors of the hyperchaotic system are amalgamated to form an input image signal. This signal is then processed by a deep convolutional neural network (CNN) to extract profound features. Subsequently, the DDPG determines the coefficients of the proportional–integral–derivative (PID) controller based on the features discerned from the CNN. The proposed approach exhibits robustness to uncertainties and varying initial conditions, attributed to the DDPG’s ability to learn from the input image signal and adaptively adjust control policies and PID coefficients. The results demonstrate that the proposed adaptive PID controller, integrated with DDPG and CNN, surpasses conventional controllers in terms of synchronization accuracy and response speed. The paper presents the following: a 6D hyperchaotic system’s dynamic model, a CNN-based DDPG’s structure, and how it performs and compares to traditional methods. Then, it summarizes the main findings.","PeriodicalId":507087,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":" 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01423312241253639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a method for the adaptive control of a six-dimensional (6D) hyperchaotic system using a multi-input multi-output (MIMO) approach, leveraging the deep deterministic policy gradient (DDPG) algorithm. The states and tracking errors of the hyperchaotic system are amalgamated to form an input image signal. This signal is then processed by a deep convolutional neural network (CNN) to extract profound features. Subsequently, the DDPG determines the coefficients of the proportional–integral–derivative (PID) controller based on the features discerned from the CNN. The proposed approach exhibits robustness to uncertainties and varying initial conditions, attributed to the DDPG’s ability to learn from the input image signal and adaptively adjust control policies and PID coefficients. The results demonstrate that the proposed adaptive PID controller, integrated with DDPG and CNN, surpasses conventional controllers in terms of synchronization accuracy and response speed. The paper presents the following: a 6D hyperchaotic system’s dynamic model, a CNN-based DDPG’s structure, and how it performs and compares to traditional methods. Then, it summarizes the main findings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对 6D 超混沌系统使用深度确定性策略梯度的自适应 PID 控制器
本文介绍了一种利用深度确定性策略梯度(DDPG)算法,采用多输入多输出(MIMO)方法对六维(6D)超混沌系统进行自适应控制的方法。超混沌系统的状态和跟踪误差合并形成输入图像信号。然后由深度卷积神经网络(CNN)对该信号进行处理,以提取深刻的特征。随后,DDPG 根据 CNN 识别出的特征确定比例-积分-派生(PID)控制器的系数。由于 DDPG 能够从输入图像信号中学习并自适应地调整控制策略和 PID 系数,因此所提出的方法对不确定性和不同的初始条件具有鲁棒性。结果表明,集成了 DDPG 和 CNN 的拟议自适应 PID 控制器在同步精度和响应速度方面超越了传统控制器。本文介绍了以下内容:6D 超混沌系统的动态模型、基于 CNN 的 DDPG 结构以及它的性能和与传统方法的比较。然后,论文总结了主要发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Event-triggered leader-following consensus of nonlinear semi-Markovian multi-agent systems via improved integral inequalities Event-driven fuzzy L∞ control of DC microgrids under cyber attacks and quantization Stable constrained model predictive control based on IOFL technique for boiler-turbine system Improved adaptive snake optimization algorithm with application to multi-UAV path planning Adaptive model predictive control–based curved path-tracking strategy for autonomous vehicles under variable velocity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1