Optimizing pipeline systems with surge tanks using a dimensionless transient model

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2024-06-07 DOI:10.2166/hydro.2024.007
Sanghyun Kim
{"title":"Optimizing pipeline systems with surge tanks using a dimensionless transient model","authors":"Sanghyun Kim","doi":"10.2166/hydro.2024.007","DOIUrl":null,"url":null,"abstract":"\n The design factor of surge tank installation is a practical issue in the management of pressurized pipeline systems. To determine the general criteria for surge tank design in pipeline systems, dimensionless governing equations for unsteady flow and their solutions were developed for two widely used pipeline systems equipped with surge tanks. One is the reservoir pipeline surge tank valve and the other is the pipeline system with a pumping station and check valve protected by the surge tank. Two distinct time-domain responses, point- and line-integrated pressure, can be used as objective functions to optimize the surge tank area. The developed formulations were integrated into a metaheuristic engine, particle swarm optimization, to explore a general solution for a wide range of dimensionless resistances that comprehensively address various flow features into one dimensionless parameter. Depending on the dimensionless location of the surge tank, the optimum dimensionless surge tank areas were delineated for a range of dimensionless resistances for the two pipeline systems with and without a pumping station protected by a surge tank.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2024.007","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The design factor of surge tank installation is a practical issue in the management of pressurized pipeline systems. To determine the general criteria for surge tank design in pipeline systems, dimensionless governing equations for unsteady flow and their solutions were developed for two widely used pipeline systems equipped with surge tanks. One is the reservoir pipeline surge tank valve and the other is the pipeline system with a pumping station and check valve protected by the surge tank. Two distinct time-domain responses, point- and line-integrated pressure, can be used as objective functions to optimize the surge tank area. The developed formulations were integrated into a metaheuristic engine, particle swarm optimization, to explore a general solution for a wide range of dimensionless resistances that comprehensively address various flow features into one dimensionless parameter. Depending on the dimensionless location of the surge tank, the optimum dimensionless surge tank areas were delineated for a range of dimensionless resistances for the two pipeline systems with and without a pumping station protected by a surge tank.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用无量纲瞬态模型优化带防波堤的管道系统
在有压管道系统的管理中,防波堤安装的设计因素是一个实际问题。为了确定管线系统中防波堤设计的一般标准,针对两种广泛使用的配备防波堤的管线系统,建立了非稳态流的无量纲控制方程及其解法。一个是水库管道防波阀,另一个是带有泵站和防波阀的管道系统。点综合压力和线综合压力这两种不同的时域响应可用作优化缓冲罐面积的目标函数。所开发的公式被集成到元启发式引擎--粒子群优化中,以探索适用于各种无量纲阻力的通用解决方案,将各种流动特征综合为一个无量纲参数。根据涌流槽的无量纲位置,针对有涌流槽保护泵站和无涌流槽保护泵站的两个管道系统的一系列无量纲阻力,划定了最佳无量纲涌流槽区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
Sensitivity of model-based leakage localisation in water distribution networks to water demand sampling rates and spatio-temporal data gaps Efficient functioning of a sewer system: application of novel hybrid machine learning methods for the prediction of particle Froude number Quantile mapping technique for enhancing satellite-derived precipitation data in hydrological modelling: a case study of the Lam River Basin, Vietnam Development and application of a hybrid artificial neural network model for simulating future stream flows in catchments with limited in situ observed data Formation of meandering streams in a young floodplain within the Yarlung Tsangpo Grand Canyon in the Tibetan Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1