Deployable thin-film structure is an ideal requirement for space structures used for deep space exploration. One of the obstacles encountered by this structure is the problem of film surface accuracy caused by in-orbit temperature changes and plastic creases created by folding storage. This paper investigates how temperature and crease affect the wrinkling behaviors of thin films. A constitutive model accounting for temperature and crease effects is first derived, and by combining the maximum strain energy principle of tension field theory with the provided model, a numerical analysis method is established to analyze wrinkling films. The stress distribution and wrinkling direction of a rectangular film with or without crease under different temperatures are calculated using this method. Some important and interesting features are observed from the analysis results. The crease and temperature can affect the stress distribution and wrinkling angle of the wrinkling film. Furthermore, the wrinkling angle is more heavily affected by the crease, and the temperature’s impact on the wrinkling angle of the creased film is magnified. This work explains the physical mechanism of the effects of both crease and temperature on wrinkles in deployable film structures and provides a simulation method for studying the wrinkling characteristics of thin films, considering the effects of both the temperature and the crease.