{"title":"Electrospun carbon nanofiber-supported V2O3 with enriched oxygen vacancies as a free-standing high-rate anode for an all-vanadium-based full battery","authors":"Qi Lai, Bincen Yin, Yu Dou, Qing Zhang, Yunhai Zhu, Yingkui Yang","doi":"10.1002/cey2.517","DOIUrl":null,"url":null,"abstract":"<p>Synergistic regulation of hierarchical nanostructures and defect engineering is effective in accelerating electron and ion transport for metal oxide electrodes. Herein, carbon nanofiber-supported V<sub>2</sub>O<sub>3</sub> with enriched oxygen vacancies (OV-V<sub>2</sub>O<sub>3</sub>@CNF) was fabricated using the facile electrospinning method, followed by thermal reduction. Differing from the traditional particles embedded within carbon nanofibers or irregularly distributed between carbon nanofibers, the free-standing OV-V<sub>2</sub>O<sub>3</sub>@CNF allows for V<sub>2</sub>O<sub>3</sub> nanosheets to grow vertically on one-dimensional (1D) carbon nanofibers, enabling abundant active sites, shortened ion diffusion pathway, continuous electron transport, and robust structural stability. Meanwhile, density functional theory calculations confirmed that the oxygen vacancies can promote intrinsic electron conductivity and reduce ion diffusion energy barrier. Consequently, the OV-V<sub>2</sub>O<sub>3</sub>@CNF anode delivers a large reversible capacity of 812 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup>, superior rate capability (405 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup>), and long cycle life (378 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup> after 1000 cycles). Moreover, an all-vanadium full battery (V<sub>2</sub>O<sub>5</sub>//OV-V<sub>2</sub>O<sub>3</sub>@CNF) was assembled using an OV-V<sub>2</sub>O<sub>3</sub>@CNF anode and a V<sub>2</sub>O<sub>5</sub> cathode, which outputs a working voltage of 2.5 V with high energy density and power density, suggesting promising practical application. This work offers fresh perspectives on constructing hierarchical 1D nanofiber electrodes by combining defect engineering and electrospinning technology.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":19.5000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.517","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.517","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Synergistic regulation of hierarchical nanostructures and defect engineering is effective in accelerating electron and ion transport for metal oxide electrodes. Herein, carbon nanofiber-supported V2O3 with enriched oxygen vacancies (OV-V2O3@CNF) was fabricated using the facile electrospinning method, followed by thermal reduction. Differing from the traditional particles embedded within carbon nanofibers or irregularly distributed between carbon nanofibers, the free-standing OV-V2O3@CNF allows for V2O3 nanosheets to grow vertically on one-dimensional (1D) carbon nanofibers, enabling abundant active sites, shortened ion diffusion pathway, continuous electron transport, and robust structural stability. Meanwhile, density functional theory calculations confirmed that the oxygen vacancies can promote intrinsic electron conductivity and reduce ion diffusion energy barrier. Consequently, the OV-V2O3@CNF anode delivers a large reversible capacity of 812 mAh g−1 at 0.1 A g−1, superior rate capability (405 mAh g−1 at 5 A g−1), and long cycle life (378 mAh g−1 at 5 A g−1 after 1000 cycles). Moreover, an all-vanadium full battery (V2O5//OV-V2O3@CNF) was assembled using an OV-V2O3@CNF anode and a V2O5 cathode, which outputs a working voltage of 2.5 V with high energy density and power density, suggesting promising practical application. This work offers fresh perspectives on constructing hierarchical 1D nanofiber electrodes by combining defect engineering and electrospinning technology.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.