Yeonsoo Cho, Jin-Ho Yoon, Jee-Hoon Jeong, J. Kug, Baek-Min Kim, Hyungjun Kim, Rokjin Park, Sang-Woo Kim
{"title":"Precipitation-induced abrupt decrease of Siberian wildfire in summer 2022 under continued warming","authors":"Yeonsoo Cho, Jin-Ho Yoon, Jee-Hoon Jeong, J. Kug, Baek-Min Kim, Hyungjun Kim, Rokjin Park, Sang-Woo Kim","doi":"10.1088/1748-9326/ad5573","DOIUrl":null,"url":null,"abstract":"\n Wildfires in Northeast (NE) Siberia have become more frequent owing to the warming climate, exerting a profound impact on the global carbon cycle. While an increase in global temperature is recognized as a primary driver of unprecedented wildfires, the role of precipitation during wildfire season is relatively unexplored. Here, we present evidence that an increase in summer precipitation led to a sudden decrease in NE Siberian wildfires, especially in 2022, notwithstanding the persistent warming trend in the northern high latitudes. The interannual variability of summer precipitation, linked to the large-scale atmospheric circulation, known as the Scandinavia (SCAND) pattern, significantly impacts the regulation of wildfires. Climate models project enhanced variability in summer precipitation, potentially amplifying year-to-year fluctuations in wildfire occurrences. The interplay between the temperature and precipitation patterns in NE Siberia under ongoing warming may increase the occurrence of extreme wildfires, leading to a substantial release of carbon and further contributing to climate warming.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad5573","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Wildfires in Northeast (NE) Siberia have become more frequent owing to the warming climate, exerting a profound impact on the global carbon cycle. While an increase in global temperature is recognized as a primary driver of unprecedented wildfires, the role of precipitation during wildfire season is relatively unexplored. Here, we present evidence that an increase in summer precipitation led to a sudden decrease in NE Siberian wildfires, especially in 2022, notwithstanding the persistent warming trend in the northern high latitudes. The interannual variability of summer precipitation, linked to the large-scale atmospheric circulation, known as the Scandinavia (SCAND) pattern, significantly impacts the regulation of wildfires. Climate models project enhanced variability in summer precipitation, potentially amplifying year-to-year fluctuations in wildfire occurrences. The interplay between the temperature and precipitation patterns in NE Siberia under ongoing warming may increase the occurrence of extreme wildfires, leading to a substantial release of carbon and further contributing to climate warming.
期刊介绍:
Environmental Research Letters (ERL) is a high-impact, open-access journal intended to be the meeting place of the research and policy communities concerned with environmental change and management.
The journal''s coverage reflects the increasingly interdisciplinary nature of environmental science, recognizing the wide-ranging contributions to the development of methods, tools and evaluation strategies relevant to the field. Submissions from across all components of the Earth system, i.e. land, atmosphere, cryosphere, biosphere and hydrosphere, and exchanges between these components are welcome.