High-pressure phase transition in clinochlore: IIa polytype stabilization

IF 2.7 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS American Mineralogist Pub Date : 2024-06-07 DOI:10.2138/am-2023-9277
Benedetta Chrappan Soldavini, D. Comboni, M. Hanfland, Marco Merlini
{"title":"High-pressure phase transition in clinochlore: IIa polytype stabilization","authors":"Benedetta Chrappan Soldavini, D. Comboni, M. Hanfland, Marco Merlini","doi":"10.2138/am-2023-9277","DOIUrl":null,"url":null,"abstract":"\n Natural clinochlore structural variations with pressure have been studied by in-situ single crystal X-ray diffraction in diamond-anvil cell in the pressure interval 0-20 GPa at room temperature. High resolution data allowed for the identification of a polytypic phase transition at about 9 GPa. Around 4.32(5) GPa, the sample showed a significant deviation from linear behavior of the unit cell parameters, particularly in the c and β values, abruptly interrupted when the phase transition occurs. The X-ray diffraction patterns showed a drastic reduction of diffuse scattering due to the stabilization of the high-pressure structure, suggesting that the atomic reorganization of the layers led to a disorder reduction. The phase transition showed complete reversibility during the experiment. Ab-initio structural refinements identified the transition as polytypic, from the initial IIb-4 triclinic polytype (space group C1) to the IIa-1 monoclinic structure (space group C2/m), with unit cell parameters a=5.2058(6) Å, b=9.0208(4) Å, c=13.560(7) Å, β=97.34(3)°. The latter was theoretically derived back in the ’60s as the least stable chlorite polytype and has never been observed before in natural chlorites. The phase transition also has a significative effect on the bulk modulus, with a reduction from K0=81.2(13) GPa to K0=56.0(6), for the high-pressure structure. An isothermal run at 600 K from ambient pressure to 14 GPa showed the same phase transition at 7.8(5) GPa. Its occurrence at lower pressures suggests a negative P/T slope for this transition. Therefore, at high-temperature and high-pressure conditions compatible with impact phenomena, the polytypic phase transition could prevent chlorite from early destabilization and dehydration.","PeriodicalId":7768,"journal":{"name":"American Mineralogist","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Mineralogist","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2138/am-2023-9277","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Natural clinochlore structural variations with pressure have been studied by in-situ single crystal X-ray diffraction in diamond-anvil cell in the pressure interval 0-20 GPa at room temperature. High resolution data allowed for the identification of a polytypic phase transition at about 9 GPa. Around 4.32(5) GPa, the sample showed a significant deviation from linear behavior of the unit cell parameters, particularly in the c and β values, abruptly interrupted when the phase transition occurs. The X-ray diffraction patterns showed a drastic reduction of diffuse scattering due to the stabilization of the high-pressure structure, suggesting that the atomic reorganization of the layers led to a disorder reduction. The phase transition showed complete reversibility during the experiment. Ab-initio structural refinements identified the transition as polytypic, from the initial IIb-4 triclinic polytype (space group C1) to the IIa-1 monoclinic structure (space group C2/m), with unit cell parameters a=5.2058(6) Å, b=9.0208(4) Å, c=13.560(7) Å, β=97.34(3)°. The latter was theoretically derived back in the ’60s as the least stable chlorite polytype and has never been observed before in natural chlorites. The phase transition also has a significative effect on the bulk modulus, with a reduction from K0=81.2(13) GPa to K0=56.0(6), for the high-pressure structure. An isothermal run at 600 K from ambient pressure to 14 GPa showed the same phase transition at 7.8(5) GPa. Its occurrence at lower pressures suggests a negative P/T slope for this transition. Therefore, at high-temperature and high-pressure conditions compatible with impact phenomena, the polytypic phase transition could prevent chlorite from early destabilization and dehydration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
克林奇洛尔的高压相变:IIa 多型稳定
在室温条件下,通过金刚石-紫外单元中的原位单晶 X 射线衍射,研究了 0-20 GPa 压力区间内天然倩彩石结构随压力的变化。通过高分辨率数据,可以确定在约 9 GPa 时出现了多型相变。在 4.32(5) GPa 左右,样品的单胞参数出现了明显的线性偏差,尤其是 c 和 β 值,在发生相变时突然中断。X 射线衍射图样显示,由于高压结构的稳定,扩散散射急剧下降,这表明层的原子重组导致了无序度的降低。在实验过程中,相变显示出完全的可逆性。Ab-initio 结构细化确定了这一转变为多晶型,从最初的 IIb-4 三菱型多晶型(空间群 C1)转变为 IIa-1 单斜型结构(空间群 C2/m),单胞参数 a=5.2058(6) Å,b=9.0208(4) Å,c=13.560(7) Å,β=97.34(3)°。后者是早在 60 年代就从理论上推导出来的最不稳定的绿泥石多型,以前从未在天然绿泥石中观察到过。相变对体积模量也有显著影响,高压结构的体积模量从 K0=81.2(13) GPa 降至 K0=56.0(6)。在 600 K 的等温条件下,从环境压力到 14 GPa,在 7.8(5) GPa 时出现了相同的相变。在较低的压力下出现这种转变,表明这种转变的 P/T 斜率为负值。因此,在与冲击现象相适应的高温高压条件下,多型相变可防止绿泥石早期失稳和脱水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
American Mineralogist
American Mineralogist 地学-地球化学与地球物理
CiteScore
5.20
自引率
9.70%
发文量
276
审稿时长
1 months
期刊介绍: American Mineralogist: Journal of Earth and Planetary Materials (Am Min), is the flagship journal of the Mineralogical Society of America (MSA), continuously published since 1916. Am Min is home to some of the most important advances in the Earth Sciences. Our mission is a continuance of this heritage: to provide readers with reports on original scientific research, both fundamental and applied, with far reaching implications and far ranging appeal. Topics of interest cover all aspects of planetary evolution, and biological and atmospheric processes mediated by solid-state phenomena. These include, but are not limited to, mineralogy and crystallography, high- and low-temperature geochemistry, petrology, geofluids, bio-geochemistry, bio-mineralogy, synthetic materials of relevance to the Earth and planetary sciences, and breakthroughs in analytical methods of any of the aforementioned.
期刊最新文献
Two modes of terrestrial phosphide formation Magnetic collapse and low conductivity of Fe3N in the deep interiors of Earth-like planets 9362R: Jianmuite, ZrTi4+Ti3+5Al3O16, a new mineral from the Allende meteorite and from chromitite near Kangjinla, Tibet, China Titanite and allanite as a record of multistage co-mobility of Ti-REE-Nb-As during metamorphism in the Central Alps Single and Multi-Mineral Classification using Dual-Band Raman Spectroscopy for Planetary Surface Missions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1