Wen-xiong Xi, Peng Liu, Rongdi Zhang, Tianyang Dong, Jian Liu
{"title":"Numerical Investigation of Flow Structures and Combustion Mechanisms with Different Injection Locations in a Hydrogen-Fueled Scramjet Combustor","authors":"Wen-xiong Xi, Peng Liu, Rongdi Zhang, Tianyang Dong, Jian Liu","doi":"10.3390/fire7060191","DOIUrl":null,"url":null,"abstract":"This work primarily focuses on a three-dimensional model of flame propagation and stable combustion in a scramjet chamber. The one-equation LES turbulence model is adopted to close the sub-grid-scale turbulent viscosity terms. The finite-rate combustion model, along with the Jachimowski detailed hydrogen reaction mechanism with eight components and nineteen steps, is used to analyze the flame propagation characteristics of hydrogen combustion in the scramjet combustion chamber. Initially, based on the combustion chamber model, the effect of different injection locations and equivalence ratios on flame kernel formation and the flame propagation process is analyzed. The relationship between different fuel injection conditions and the oxygen consumption rate of the combustion chamber, as well as the total pressure recovery coefficient changes, is investigated. The research focuses on changes in equivalence ratios and injection hole distributions, with injection holes arranged upstream, downstream, and inside of the cavity. The result indicated that when the injection holes were arranged downstream of the cavity, there was a phenomenon of flame backflow into the cavity, which was related to the size of the injection pressure. For this work, the pressure causing flame backflow was approximately 2 MPa. When the injection hole was arranged inside the cavity, the relative distance difference between the injection hole and the upper wall of the cavity led to the formation of two reaction zones in the combustion chamber. When the injection hole was arranged upstream of the cavity, different injection equivalence ratios affected the final stable position and structure of the flame. Therefore, the injection position, injection pressure, and injection equivalence ratio all had a certain impact on the flame kernel formation and flame propagation process.","PeriodicalId":12279,"journal":{"name":"Fire","volume":"206 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fire7060191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work primarily focuses on a three-dimensional model of flame propagation and stable combustion in a scramjet chamber. The one-equation LES turbulence model is adopted to close the sub-grid-scale turbulent viscosity terms. The finite-rate combustion model, along with the Jachimowski detailed hydrogen reaction mechanism with eight components and nineteen steps, is used to analyze the flame propagation characteristics of hydrogen combustion in the scramjet combustion chamber. Initially, based on the combustion chamber model, the effect of different injection locations and equivalence ratios on flame kernel formation and the flame propagation process is analyzed. The relationship between different fuel injection conditions and the oxygen consumption rate of the combustion chamber, as well as the total pressure recovery coefficient changes, is investigated. The research focuses on changes in equivalence ratios and injection hole distributions, with injection holes arranged upstream, downstream, and inside of the cavity. The result indicated that when the injection holes were arranged downstream of the cavity, there was a phenomenon of flame backflow into the cavity, which was related to the size of the injection pressure. For this work, the pressure causing flame backflow was approximately 2 MPa. When the injection hole was arranged inside the cavity, the relative distance difference between the injection hole and the upper wall of the cavity led to the formation of two reaction zones in the combustion chamber. When the injection hole was arranged upstream of the cavity, different injection equivalence ratios affected the final stable position and structure of the flame. Therefore, the injection position, injection pressure, and injection equivalence ratio all had a certain impact on the flame kernel formation and flame propagation process.