Effect of axial ultrasonic vibration on the surface topography and microstructure of Al6061 chip in extrusion cutting

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING International Journal of Material Forming Pub Date : 2024-06-06 DOI:10.1007/s12289-024-01837-9
Yunyun Pi, Chongjin Gao, Xiaolong Yin
{"title":"Effect of axial ultrasonic vibration on the surface topography and microstructure of Al6061 chip in extrusion cutting","authors":"Yunyun Pi,&nbsp;Chongjin Gao,&nbsp;Xiaolong Yin","doi":"10.1007/s12289-024-01837-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a new process of axial ultrasonic vibration-assisted extrusion cutting (AUV-EC) is proposed to prepare Al6061 alloy ultrafine-grained chip strips. The principles of AUV-EC are analyzed. The cutting motion trajectory equations of the main tool and the constraint tool during the AUV-EC process are established, and the theoretical cut marks on the chip surface are predicted. AUV-EC experiments are conducted to verify the theoretical cut marks on the chip surface and characterize the surface topography and microstructure of the chip strip samples. The results show that applying ultrasonic vibration with a frequency of 33 ~ 34.5 kHz and an amplitude of 1 ~ 6 μm in the AUV-EC process can improve the chip strip’s surface quality. Compared with traditional extrusion cutting (EC) chip samples, AUV-EC chip samples have better surface flatness and smoothness and lower surface defect ratios. The average grain sizes of the traditional EC and AUV-EC chip samples are approximately 164 nm and 135 nm, respectively. Many dynamic recovery grains are distributed in traditional EC chips, but there is only a small amount in AUV-EC chips. The x-ray diffraction (XRD) test finds that the AUV-EC chip has a higher dislocation density.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-024-01837-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a new process of axial ultrasonic vibration-assisted extrusion cutting (AUV-EC) is proposed to prepare Al6061 alloy ultrafine-grained chip strips. The principles of AUV-EC are analyzed. The cutting motion trajectory equations of the main tool and the constraint tool during the AUV-EC process are established, and the theoretical cut marks on the chip surface are predicted. AUV-EC experiments are conducted to verify the theoretical cut marks on the chip surface and characterize the surface topography and microstructure of the chip strip samples. The results show that applying ultrasonic vibration with a frequency of 33 ~ 34.5 kHz and an amplitude of 1 ~ 6 μm in the AUV-EC process can improve the chip strip’s surface quality. Compared with traditional extrusion cutting (EC) chip samples, AUV-EC chip samples have better surface flatness and smoothness and lower surface defect ratios. The average grain sizes of the traditional EC and AUV-EC chip samples are approximately 164 nm and 135 nm, respectively. Many dynamic recovery grains are distributed in traditional EC chips, but there is only a small amount in AUV-EC chips. The x-ray diffraction (XRD) test finds that the AUV-EC chip has a higher dislocation density.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轴向超声振动对挤压切削中 Al6061 切屑表面形貌和微观结构的影响
本研究提出了一种轴向超声振动辅助挤压切割(AUV-EC)新工艺,用于制备 Al6061 合金超细晶粒带材。分析了 AUV-EC 的原理。建立了 AUV-EC 过程中主刀具和约束刀具的切削运动轨迹方程,并预测了切屑表面的理论切痕。通过 AUV-EC 实验验证了芯片表面的理论切痕,并表征了芯片带材样品的表面形貌和微观结构。结果表明,在 AUV-EC 过程中应用频率为 33 ~ 34.5 kHz、振幅为 1 ~ 6 μm 的超声波振动可改善芯片带材的表面质量。与传统的挤压切割(EC)芯片样品相比,AUV-EC 芯片样品的表面平整度和光滑度更好,表面缺陷率更低。传统 EC 和 AUV-EC 芯片样品的平均晶粒大小分别约为 164 nm 和 135 nm。传统 EC 芯片中分布着许多动态复原晶粒,而 AUV-EC 芯片中只有少量。X 射线衍射 (XRD) 测试发现,AUV-EC 芯片的位错密度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
期刊最新文献
The evolution of thermal cycle, microstructures and mechanical properties of 6061 – T6 aluminum alloy thick plate Bobbin tool friction stir welded Generalisation of the hydrodynamics model method for hot and cold strip rolling application UNIMAT: An enhanced forming simulation model of prepreg woven fabrics, with application to process optimization for wrinkle mitigation Optimisation of interlayer temperature in wire-arc additive manufacturing process using NURBS-based metamodel Accurate real-time modeling for multiple-blow forging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1