IMPROVEMENT OF INCIDENT MANAGEMENT MODEL USING MACHINE LEARNING METHODS

Roman Jevsejev, Mindaugas Bereiša
{"title":"IMPROVEMENT OF INCIDENT MANAGEMENT MODEL USING MACHINE LEARNING METHODS","authors":"Roman Jevsejev, Mindaugas Bereiša","doi":"10.3846/mla.2024.21633","DOIUrl":null,"url":null,"abstract":"Technical support of IT infrastructure is a crucial aspect of organizational operations, with the most challenging task being ensuring service continuity. Quality support guarantees high IT efficiency, but complex incidents reduce support quality and require effective management. Incident management includes configuration processes and control of technical solutions. To improve technical support, adhering to both quantitative and qualitative standards and considering system specifics is necessary. According to service level agreements (SLA), the resolution time of incidents is important. „Service Desk“ tools, applying machine learning methods, can help optimize these processes. Incorrectly classified user requests lead to additional work for the IT team and delay incident resolution. Machine learning methods, such as K-means clustering, Random Forest regression, and classification, can optimize incident management and speed up resolution time. The research analyzes „Service Desk“ incident data to model resolution times and improve incident management.","PeriodicalId":509183,"journal":{"name":"Mokslas - Lietuvos ateitis","volume":"71 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mokslas - Lietuvos ateitis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/mla.2024.21633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Technical support of IT infrastructure is a crucial aspect of organizational operations, with the most challenging task being ensuring service continuity. Quality support guarantees high IT efficiency, but complex incidents reduce support quality and require effective management. Incident management includes configuration processes and control of technical solutions. To improve technical support, adhering to both quantitative and qualitative standards and considering system specifics is necessary. According to service level agreements (SLA), the resolution time of incidents is important. „Service Desk“ tools, applying machine learning methods, can help optimize these processes. Incorrectly classified user requests lead to additional work for the IT team and delay incident resolution. Machine learning methods, such as K-means clustering, Random Forest regression, and classification, can optimize incident management and speed up resolution time. The research analyzes „Service Desk“ incident data to model resolution times and improve incident management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习方法改进事件管理模式
IT 基础设施的技术支持是组织运营的一个重要方面,其中最具挑战性的任务是确保服务的连续性。高质量的支持是 IT 高效率的保证,但复杂的事件会降低支持质量,因此需要有效的管理。事件管理包括技术解决方案的配置流程和控制。要改进技术支持,必须同时遵守定量和定性标准,并考虑系统的具体情况。根据服务水平协议(SLA),事件的解决时间非常重要。应用机器学习方法的 "服务台 "工具可以帮助优化这些流程。对用户请求的不正确分类会给 IT 团队带来额外的工作,并延误事件的解决。K 均值聚类、随机森林回归和分类等机器学习方法可以优化事件管理并加快解决时间。该研究分析了 "服务台 "事件数据,以模拟解决时间并改进事件管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
POSSIBILITIES OF APPLYING A LOW-TEMPERATURE CENTRALIZED HEAT SUPPLY NETWORK IN A MULTI-APARTMENT BUILDING DISTRICT IMPROVEMENT OF INCIDENT MANAGEMENT MODEL USING MACHINE LEARNING METHODS RESEARCH AND ANALYSIS OF THE POTENTIAL USE OF PLASTIC WASTE FROM THE MECHANICAL PROCESSING OF PLASTICS A REVIEW OF AQUATIC PLANT BIOMASS PRETREATMENT METHODS FOR BIOGAS PRODUCTION APPLICATION OF PERMEABLE ASPHALT PAVEMENT CONSTRUCTION IN TRAFFIC AREAS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1