Research on UAV-assisted Vehicle networking task unloading strategy based on multi-agent reinforcement learning

Fanjin Zeng
{"title":"Research on UAV-assisted Vehicle networking task unloading strategy based on multi-agent reinforcement learning","authors":"Fanjin Zeng","doi":"10.61173/ceadt415","DOIUrl":null,"url":null,"abstract":"With the development of technology, in order to improve the user’s driving experience and driving safety, there are more and more vehicle tasks with high delay requirements.  Therefore, lots of researchers have paid attention to task offloading scheduling.However, as vehicle tasks become increasingly complex, a single task may consist of multiple subtasks with dependencies between them.The complex data dependencies within them make it more and more difficult to design appropriate task offloading strategies. Considering that this problem is closely related to the scenarios and requirements in the real world, this study focuses on the design of task offloading decisions in the scenario of UAV-assisted vehicle network, in which MEC servers are installed in the macro base station and UAV to provide computing resources for vehicles. We designed a task offloading strategy based on MATD3 algorithm to deal with this problem. Following simulation trials, it is evident that our approach offers notable benefits in terms of both delay and energy usage.","PeriodicalId":438278,"journal":{"name":"Science and Technology of Engineering, Chemistry and Environmental Protection","volume":"30 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Engineering, Chemistry and Environmental Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61173/ceadt415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of technology, in order to improve the user’s driving experience and driving safety, there are more and more vehicle tasks with high delay requirements.  Therefore, lots of researchers have paid attention to task offloading scheduling.However, as vehicle tasks become increasingly complex, a single task may consist of multiple subtasks with dependencies between them.The complex data dependencies within them make it more and more difficult to design appropriate task offloading strategies. Considering that this problem is closely related to the scenarios and requirements in the real world, this study focuses on the design of task offloading decisions in the scenario of UAV-assisted vehicle network, in which MEC servers are installed in the macro base station and UAV to provide computing resources for vehicles. We designed a task offloading strategy based on MATD3 algorithm to deal with this problem. Following simulation trials, it is evident that our approach offers notable benefits in terms of both delay and energy usage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多代理强化学习的无人机辅助车联网任务卸载策略研究
随着技术的发展,为了提高用户的驾驶体验和行车安全,对延迟要求较高的车辆任务越来越多。 然而,随着车辆任务变得越来越复杂,单个任务可能由多个子任务组成,且子任务之间存在依赖关系,其中复杂的数据依赖关系使得设计合适的任务卸载策略变得越来越困难。考虑到这一问题与现实世界中的场景和需求密切相关,本研究重点关注无人机辅助车载网络场景下的任务卸载决策设计,即在宏基站和无人机中安装 MEC 服务器,为车辆提供计算资源。针对这一问题,我们设计了一种基于 MATD3 算法的任务卸载策略。经过模拟试验,我们的方法显然在延迟和能源使用方面都有显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of EfficientNet in medical waste classification A Review of Research on Hospital Electronic Medical Record Management System Based on Cloud Computing Exploration of the Application of UAV Remote Sensing Technology in Engineering Surveying and Mapping Research on the Influencing factors of Heart Disease based on Binary Logistic Regression A review of YOLO-based traffic sign target detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1