{"title":"Conditional \\(L^{\\infty }\\) Estimates for the Non-cutoff Boltzmann Equation in a Bounded Domain","authors":"Zhimeng Ouyang, Luis Silvestre","doi":"10.1007/s00205-024-02002-x","DOIUrl":null,"url":null,"abstract":"<div><p>We consider weak solutions of the inhomogeneous non-cutoff Boltzmann equation in a bounded domain with any of the usual physical boundary conditions: in-flow, bounce-back, specular-reflection and diffuse-reflection. When the mass, energy and entropy densities are bounded above, and the mass density is bounded away from a vacuum, we obtain an estimate of the <span>\\(L^\\infty \\)</span> norm of the solution depending on the macroscopic bounds on these hydrodynamic quantities only. This is a regularization effect in the sense that the initial data is not required to be bounded. We present a proof based on variational ideas, which is fundamentally different to the proof that was previously known for the equation in periodic spatial domains.\n</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02002-x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider weak solutions of the inhomogeneous non-cutoff Boltzmann equation in a bounded domain with any of the usual physical boundary conditions: in-flow, bounce-back, specular-reflection and diffuse-reflection. When the mass, energy and entropy densities are bounded above, and the mass density is bounded away from a vacuum, we obtain an estimate of the \(L^\infty \) norm of the solution depending on the macroscopic bounds on these hydrodynamic quantities only. This is a regularization effect in the sense that the initial data is not required to be bounded. We present a proof based on variational ideas, which is fundamentally different to the proof that was previously known for the equation in periodic spatial domains.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.