EPTDMS: efficient and privacy-preserving top-k disease matching scheme for cloud-assisted e-healthcare system

ou ruan, xin jiang
{"title":"EPTDMS: efficient and privacy-preserving top-k disease matching scheme for cloud-assisted e-healthcare system","authors":"ou ruan, xin jiang","doi":"10.1117/12.3031898","DOIUrl":null,"url":null,"abstract":"In modern e-healthcare systems, healthcare providers usually store users' data in cloud servers. Users wish to obtain relevant diagnostic files through data generated by body sensors. We propose an efficient and privacy-preserving Top- k disease matching scheme (called EPTDMS). EPTDMS uses Density-Sensitive Hashing (DSH) to implement fuzzy search in stage one, employs the cosine value to sort the relevant result, and obtains patient diagnostic files. Improvements are made to address the problems of low matching efficiency, high computational overhead, and high communication volume of most privacy-preserving matching schemes. This scheme achieves disease matching with low computation and communication overhead and reduces the average query time.","PeriodicalId":198425,"journal":{"name":"Other Conferences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Other Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3031898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In modern e-healthcare systems, healthcare providers usually store users' data in cloud servers. Users wish to obtain relevant diagnostic files through data generated by body sensors. We propose an efficient and privacy-preserving Top- k disease matching scheme (called EPTDMS). EPTDMS uses Density-Sensitive Hashing (DSH) to implement fuzzy search in stage one, employs the cosine value to sort the relevant result, and obtains patient diagnostic files. Improvements are made to address the problems of low matching efficiency, high computational overhead, and high communication volume of most privacy-preserving matching schemes. This scheme achieves disease matching with low computation and communication overhead and reduces the average query time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EPTDMS:用于云辅助电子医疗系统的高效且保护隐私的顶k疾病匹配方案
在现代电子医疗系统中,医疗服务提供商通常将用户数据存储在云服务器中。用户希望通过身体传感器生成的数据获得相关诊断文件。我们提出了一种高效且保护隐私的 Top- k 疾病匹配方案(称为 EPTDMS)。EPTDMS 在第一阶段使用密度敏感散列(DSH)实现模糊搜索,利用余弦值对相关结果进行排序,并获取患者诊断文件。针对大多数隐私保护匹配方案存在的匹配效率低、计算开销大、通信量大等问题进行了改进。该方案以较低的计算和通信开销实现了疾病匹配,并缩短了平均查询时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Small data in model calibration for optical tissue phantom validation New approaches of supersmooth surfaces diagnostics by using carbon nanoparticles Uses of 3D printing technologies in opto-mechanics and opto-mechatronics for laboratory instruments Integrated approach to precision instrumentation: design, modeling, and experimental validation of a compliant mechanical amplifier for laser scalpel prototype Laser-induced periodic surface structures on TiAl6V4 surfaces by picosecond laser processing for dental abutments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1