Thermal response of timber connections using densified wood dowels under fire

IF 1.9 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Journal of Fire Sciences Pub Date : 2024-06-06 DOI:10.1177/07349041241257262
M. Khelifa, Trong Tuan Tran, A. Khennane, M. Oudjène, Y. Rogaume
{"title":"Thermal response of timber connections using densified wood dowels under fire","authors":"M. Khelifa, Trong Tuan Tran, A. Khennane, M. Oudjène, Y. Rogaume","doi":"10.1177/07349041241257262","DOIUrl":null,"url":null,"abstract":"A new type of timber connection using densified wood dowels is being developed and tested. The procedure involves inserting these densified dowels into pre-drilled holes. As this connection technique is in its early stages, a unique design approach is necessary, considering the impact of temperature variations. The primary goal is to characterize the thermal behaviour of these connections under elevated temperatures. The study employs an experimental approach, complemented by numerical analysis, innovatively applying kinetic models, commonly used for investigating heat-related biomass characteristics, to wood. The method requires the use of thermogravimetric analysis to identify the kinetic parameters. The proposed pyrolysis kinetic model has been implemented in the Abaqus/Implicit code via a user subroutine UMATHT. The study concludes that using kinetic models enhances accuracy by considering mass loss, a key factor influencing thermal properties. Simulation successfully replicates temperature distribution and charred layer thickness, crucial for designing timber structures.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041241257262","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A new type of timber connection using densified wood dowels is being developed and tested. The procedure involves inserting these densified dowels into pre-drilled holes. As this connection technique is in its early stages, a unique design approach is necessary, considering the impact of temperature variations. The primary goal is to characterize the thermal behaviour of these connections under elevated temperatures. The study employs an experimental approach, complemented by numerical analysis, innovatively applying kinetic models, commonly used for investigating heat-related biomass characteristics, to wood. The method requires the use of thermogravimetric analysis to identify the kinetic parameters. The proposed pyrolysis kinetic model has been implemented in the Abaqus/Implicit code via a user subroutine UMATHT. The study concludes that using kinetic models enhances accuracy by considering mass loss, a key factor influencing thermal properties. Simulation successfully replicates temperature distribution and charred layer thickness, crucial for designing timber structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用强化木钉的木材连接在火灾下的热响应
目前正在开发和测试一种使用强化木钉的新型木材连接方式。具体步骤是将这些强化木钉插入预先钻好的孔中。由于这种连接技术尚处于早期阶段,因此有必要采用独特的设计方法,同时考虑温度变化的影响。研究的主要目标是确定这些连接件在高温下的热特性。这项研究采用了实验方法,并辅以数值分析,创新性地将常用于研究热相关生物质特性的动力学模型应用于木材。该方法需要使用热重分析来确定动力学参数。提出的热解动力学模型已通过用户子程序 UMATHT 在 Abaqus/Implicit 代码中实现。研究得出结论,使用动力学模型可通过考虑质量损失这一影响热性能的关键因素来提高精度。模拟成功地复制了温度分布和炭化层厚度,这对设计木材结构至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fire Sciences
Journal of Fire Sciences 工程技术-材料科学:综合
CiteScore
4.00
自引率
0.00%
发文量
14
审稿时长
2.5 months
期刊介绍: The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
An experimental case study of escooter fire in a four-story building Measuring the fire growth potential of combustible solids using a cone calorimeter Reduced scale test bench for investigating the upward flame heat impact on external thermal insulation composite system facades Computational study on the glowing combustion of a wooden ember landing on a non-reacting substrate Fire-induced flows for complex fire scenarios in a mechanically ventilated two-storey structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1