Deepening Intelligent Microgrid Management: A Study on Improving Load Forecasting Accuracy Based on Informer Models

Yuke Wang
{"title":"Deepening Intelligent Microgrid Management: A Study on Improving Load Forecasting Accuracy Based on Informer Models","authors":"Yuke Wang","doi":"10.61173/sq6kd003","DOIUrl":null,"url":null,"abstract":"In the context of the “double carbon” strategy and the rapid development of deep learning, it provides new ideas for load forecasting of intelligent microgrids. In this study, we choose the Informer model based on the Transformer framework, which improves the self-attention mechanism and reduces the computational cost, to improve load accuracy and to achieve intelligent management of the microgrid system by accurately forecasting power load data.","PeriodicalId":438278,"journal":{"name":"Science and Technology of Engineering, Chemistry and Environmental Protection","volume":"5 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Engineering, Chemistry and Environmental Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61173/sq6kd003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of the “double carbon” strategy and the rapid development of deep learning, it provides new ideas for load forecasting of intelligent microgrids. In this study, we choose the Informer model based on the Transformer framework, which improves the self-attention mechanism and reduces the computational cost, to improve load accuracy and to achieve intelligent management of the microgrid system by accurately forecasting power load data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深化智能微电网管理:基于告警模型提高负荷预测精度的研究
在 "双碳 "战略和深度学习快速发展的背景下,为智能微电网的负荷预测提供了新思路。在本研究中,我们选择了基于 Transformer 框架的 Informer 模型,该模型改进了自我关注机制,降低了计算成本,通过准确预测电力负荷数据,提高负荷精度,实现微电网系统的智能化管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of EfficientNet in medical waste classification A Review of Research on Hospital Electronic Medical Record Management System Based on Cloud Computing Exploration of the Application of UAV Remote Sensing Technology in Engineering Surveying and Mapping Research on the Influencing factors of Heart Disease based on Binary Logistic Regression A review of YOLO-based traffic sign target detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1