Rui Wang, Jing Huang, Zhenzhen Tian, Zhenhua Bai, Sufang Li, Xiangyun Ji, Zhimin Zhao, Changshuai Sun
{"title":"Study on deformation behaviour of TA2/Q345R composite plate during heat treatment process","authors":"Rui Wang, Jing Huang, Zhenzhen Tian, Zhenhua Bai, Sufang Li, Xiangyun Ji, Zhimin Zhao, Changshuai Sun","doi":"10.1007/s12289-024-01834-y","DOIUrl":null,"url":null,"abstract":"<div><p>The finite element method combined with the experiment analyzed the evolution mechanism of the plastic strain state and warping deformation of the TA2/Q345R composite plate during heat treatment. Then, the factors influencing plastic strain state and shape warping in the composite plate were discussed. The results show that during the heat treatment process, the composite plate’s internal strain state and macroscopic shape state are impacted by the thermal strain and bending strain between the heterogeneous metal layers, and both are in a continuous dynamic variation state. Therefore, the ultimate deformation behaviour of the composite plate depends on the accumulation and inheritance of plastic deformation during heat treatment. There is a critical value of the composite ratio and the total thickness of the composite plate, respectively, which determines the direction of the warpage after heat treatment.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-024-01834-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The finite element method combined with the experiment analyzed the evolution mechanism of the plastic strain state and warping deformation of the TA2/Q345R composite plate during heat treatment. Then, the factors influencing plastic strain state and shape warping in the composite plate were discussed. The results show that during the heat treatment process, the composite plate’s internal strain state and macroscopic shape state are impacted by the thermal strain and bending strain between the heterogeneous metal layers, and both are in a continuous dynamic variation state. Therefore, the ultimate deformation behaviour of the composite plate depends on the accumulation and inheritance of plastic deformation during heat treatment. There is a critical value of the composite ratio and the total thickness of the composite plate, respectively, which determines the direction of the warpage after heat treatment.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.