Friction between Strongly Compressed Polymer Brushes

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Chinese Journal of Polymer Science Pub Date : 2024-06-05 DOI:10.1007/s10118-024-3151-3
Qi Liao
{"title":"Friction between Strongly Compressed Polymer Brushes","authors":"Qi Liao","doi":"10.1007/s10118-024-3151-3","DOIUrl":null,"url":null,"abstract":"<div><p>We present the results of molecular dynamics simulations of steady shear between a pair of neutral polymer brushes, as well as a pair of charged polymer brushes in the strongly compressed regime. The results of the molecular dynamic simulations of neutral and polyelectrolyte brushes in implicit solvent including normal forces, shear forces, viscosities and friction coefficients as a function of separation between brushes, are presented in the study. The comparison of the simulation results of neutral and charged brushes shows that the charged brushes is in the quasi-neutral regime, and the dependence of viscosity on the separation distance show the similar power law of neutral brushes. Our simulation results confirm that the implicit solvent simulations of polyelectrolyte brushes that ignore hydrodynamics interaction are in agreement with the scaling predictions qualitatively because of screening of hydrodynamic interaction and long-range electrostatic interactions on the correlation length scale. Both of neutral and charged brushes show the lubrication properties that the friction coefficient decreases with the separation decreases at enough large loads. However, a maximum of friction coefficients is observed for polyelectrolyte brushes, which is in contrast to the neutral brushes with monotonical dependence.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 9","pages":"1368 - 1374"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3151-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We present the results of molecular dynamics simulations of steady shear between a pair of neutral polymer brushes, as well as a pair of charged polymer brushes in the strongly compressed regime. The results of the molecular dynamic simulations of neutral and polyelectrolyte brushes in implicit solvent including normal forces, shear forces, viscosities and friction coefficients as a function of separation between brushes, are presented in the study. The comparison of the simulation results of neutral and charged brushes shows that the charged brushes is in the quasi-neutral regime, and the dependence of viscosity on the separation distance show the similar power law of neutral brushes. Our simulation results confirm that the implicit solvent simulations of polyelectrolyte brushes that ignore hydrodynamics interaction are in agreement with the scaling predictions qualitatively because of screening of hydrodynamic interaction and long-range electrostatic interactions on the correlation length scale. Both of neutral and charged brushes show the lubrication properties that the friction coefficient decreases with the separation decreases at enough large loads. However, a maximum of friction coefficients is observed for polyelectrolyte brushes, which is in contrast to the neutral brushes with monotonical dependence.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强压缩聚合物刷之间的摩擦力
我们介绍了一对中性聚合物刷和一对带电聚合物刷在强压缩状态下稳定剪切的分子动力学模拟结果。研究中介绍了隐式溶剂中的中性刷和聚电解质刷的分子动力学模拟结果,包括法向力、剪切力、粘度和摩擦系数与刷之间分离度的函数关系。对中性电刷和带电电刷的模拟结果进行比较后发现,带电电刷处于准中性状态,而粘度与分离距离的关系则显示出与中性电刷类似的幂律。我们的模拟结果证实,由于流体动力学相互作用和长程静电相互作用在相关长度尺度上的屏蔽作用,忽略流体动力学相互作用的隐式溶剂模拟聚电解质电刷与缩放预测定性一致。中性电刷和带电电刷都显示出润滑特性,即在足够大的载荷下,摩擦系数随着分离度的减小而减小。然而,聚电解质电刷的摩擦系数达到最大值,这与中性电刷的单调依赖性形成鲜明对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Polymer Science
Chinese Journal of Polymer Science 化学-高分子科学
CiteScore
7.10
自引率
11.60%
发文量
218
审稿时长
6.0 months
期刊介绍: Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985. CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.
期刊最新文献
Chemical Synthesis of Globo H and Mannobiose Glycopolymers and their Immunological Stimulation Crosslinked Natural Rubber and Styrene Butadiene Rubber Blends/Carbon Black Composites for Self-healable and Energy-saved Applications Doping Effect of Poly(vinylidene fluoride) on Carbon Nanofibers Deduced by Thermoelectric Analysis of Their Melt Mixed Films Fabrication of Modified Fibrous Filters by Electrospinning and Investigating Their Application as Improved Face Masks Special Issue: Dynamic Polymer Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1