{"title":"Surface sieving carbon skins for propylene and propane separation","authors":"Li-Ping Guo, Ru-Shuai Liu, Jianhao Qian, Guang-Ping Hao, Junjie Guo, Hengan Wu, Fengchao Wang, An-Hui Lu","doi":"10.1038/s44286-024-00075-9","DOIUrl":null,"url":null,"abstract":"The adsorptive separation of olefin/paraffin mixtures requires the development of robust adsorbents with high selectivity and adsorption capacity. Here we introduce surface sieving carbon adsorbents for propylene/propane separations. The surface sieving carbon skins, with a thickness of approximately 5.0 nm, selectively sieve propylene through narrow slits centered at 3.6 Å. Underneath the carbon skin lies a pore reservoir centered at 4.9 Å, resulting in a high propylene adsorption capacity of ~2.0 mmol g−1. Such carbon structures readily self-assemble into water-stable and robust monoliths with highly interconnected macropores for efficient mass transfer. These structural advantages collectively contribute to the high propylene/propane separation performance of the surface sieving carbon even after boiling in water for a week. Process simulations reveal that, using this adsorbent class, 99.5% and 99.9% purity of propylene with the according recovery of 82% and 79% can be obtained from an equimolar propylene/propane mixture through a two-bed six-step vacuum swing adsorption process. The adsorptive separation of olefin–paraffin mixtures requires the development of robust adsorbents with high selectivity and adsorption capacity. Here the authors develop a physiosorbent featuring surface sieving carbon skins several nanometers in thickness, with molecular-selective pores centered at 3.6 Å, for separation of C3H6 and C3H8 with high dynamic selectivity.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 6","pages":"411-420"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00075-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The adsorptive separation of olefin/paraffin mixtures requires the development of robust adsorbents with high selectivity and adsorption capacity. Here we introduce surface sieving carbon adsorbents for propylene/propane separations. The surface sieving carbon skins, with a thickness of approximately 5.0 nm, selectively sieve propylene through narrow slits centered at 3.6 Å. Underneath the carbon skin lies a pore reservoir centered at 4.9 Å, resulting in a high propylene adsorption capacity of ~2.0 mmol g−1. Such carbon structures readily self-assemble into water-stable and robust monoliths with highly interconnected macropores for efficient mass transfer. These structural advantages collectively contribute to the high propylene/propane separation performance of the surface sieving carbon even after boiling in water for a week. Process simulations reveal that, using this adsorbent class, 99.5% and 99.9% purity of propylene with the according recovery of 82% and 79% can be obtained from an equimolar propylene/propane mixture through a two-bed six-step vacuum swing adsorption process. The adsorptive separation of olefin–paraffin mixtures requires the development of robust adsorbents with high selectivity and adsorption capacity. Here the authors develop a physiosorbent featuring surface sieving carbon skins several nanometers in thickness, with molecular-selective pores centered at 3.6 Å, for separation of C3H6 and C3H8 with high dynamic selectivity.